cytochalasin-d has been researched along with mevastatin* in 3 studies
3 other study(ies) available for cytochalasin-d and mevastatin
Article | Year |
---|---|
Characterization of Salmonella enterica serovar Typhimurium DT104 invasion in an epithelial cell line (IPEC J2) from porcine small intestine.
Salmonella Typhimurium DT104 is an emerging enteric pathogen in swine of increasing medical importance. In this study, the time course and the actin-dependent host signaling processes necessary for invasion of a S. Typhimurium DT104 field isolate were investigated in IPEC J2 epithelial cells derived from porcine small intestine. Internalized bacteria were quantified by a gentamicin resistance assay. DT104 internalization into epithelial monolayers increased steadily between 15 and 120min after apical inoculation. Internalization was reduced by the Rho GTPase inhibitor mevastatin, the N-WASP inhibitor wiskostatin and the actin-disrupting agent cytochalasin D, but not the Rac1 GTPase inhibitor NSC-23766. Early DT104 invasion of porcine enterocytes appears to be mediated by Rac1 GTPase-independent changes in epithelial actin assembly. Topics: Animals; Carbazoles; Cell Line; Colony Count, Microbial; Cytochalasin D; Electric Impedance; Epithelial Cells; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Intestine, Small; Lovastatin; Nucleic Acid Synthesis Inhibitors; Propanolamines; Salmonella Infections, Animal; Salmonella typhimurium; Swine; Swine Diseases; Time Factors | 2007 |
Cytoskeletal and phosphoinositide requirements for muscarinic receptor signaling to focal adhesion kinase and paxillin.
The mechanism whereby agonist occupancy of muscarinic cholinergic receptors elicits an increased tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin has been examined. Addition of oxotremorine-M to SH-SY5Y neuroblastoma cells resulted in rapid increases in the phosphorylation of FAK (t(1/2) = 2 min) and paxillin that were independent of integrin-extracellular matrix interactions, cell attachment, and the production of phosphoinositide-derived second messengers. In contrast, the increased tyrosine phosphorylations of FAK and paxillin were inhibited by inclusion of either cytochalasin D or mevastatin, agents that disrupt the cytoskeleton. Furthermore, phosphorylation of FAK and paxillin could be prevented by addition of either wortmannin or LY-294002, under conditions in which the synthesis of phosphatidylinositol 4-phosphate was markedly attenuated. These results indicate that muscarinic receptor-mediated increases in the tyrosine phosphorylation of FAK and paxillin in SH-SY5Y neuroblastoma cells depend on both the maintenance of an actin cytoskeleton and the ability of these cells to synthesize phosphoinositides. Topics: Actins; Androstadienes; Cell Adhesion; Cell Adhesion Molecules; Chromones; Cytochalasin D; Cytoskeletal Proteins; Cytoskeleton; Enzyme Inhibitors; Focal Adhesion Kinase 1; Focal Adhesion Protein-Tyrosine Kinases; GTP-Binding Proteins; Humans; Lovastatin; Morpholines; Muscarinic Agonists; Neuroblastoma; Nucleic Acid Synthesis Inhibitors; Paxillin; Phosphatidylinositol Phosphates; Phosphatidylinositols; Phosphoproteins; Phosphorus Radioisotopes; Phosphorylation; Protein-Tyrosine Kinases; Receptor, Insulin; Receptors, Muscarinic; Second Messenger Systems; Tumor Cells, Cultured; Tyrosine; Wortmannin | 1998 |
Leukotriene D4-induced mobilization of intracellular Ca2+ in epithelial cells is critically dependent on activation of the small GTP-binding protein Rho.
We have previously shown that the leukotriene D4 (LTD4)-induced mobilization of intracellular Ca2+ in epithelial cells is mediated by a G-protein that is distinctly different from the pertussis toxin-sensitive G-protein that regulates the subsequent influx of Ca2+. In the present study, we attempted to gain further knowledge about the mechanisms involved in the LTD4-induced mobilization of intracellular Ca2+ in epithelial cells by investigating the effects of compactin, an inhibitor of the isoprenylation pathway, on this signalling event. In cells preincubated with 10 microM compactin for 48 h, the LTD4-induced mobilization of intracellular Ca2+ was reduced by 75% in comparison with control cells. This reduction was reversed by co-administration of mevalonate (1 mM). The effect of compactin occurred regardless of whether or not Ca2+ was present in the extracellular medium, suggesting that isoprenylation must occur before Ca2+ is released from intracellular stores. In accordance with this, we also found that both the LTD4-induced formation of inositol 1,4,5-trisphosphate and the LTD4-induced phosphorylation of phospholipase C gamma 1 (PLC gamma 1) on tyrosine residues were significantly reduced in compactin-pretreated cells. These results open up the possibility that the activation of PLC gamma 1 is related to a molecule that is sensitive to impaired activity of the isoprenylation pathway, such as a small monomeric G-protein. This idea was supported by the observation that Clostridium botulinum C3 exoenzyme-induced inhibition of Rho proteins abolished the LTD4-induced intracellular mobilization of Ca2+. A regulatory role of Rho proteins in the LTD4-induced activation of PLC gamma 1 is unlikely to be indirectly mediated via an effect on the cytoskeleton, since cytochalasin D had no major effect on the LTD4-induced mobilization of Ca2+. Although the mechanism of interaction remains to be elucidated, the present findings indicate an important role of an isoprenylated protein such as Rho in the LTD4-induced Ca2+ signal. Topics: ADP Ribose Transferases; Botulinum Toxins; Calcium; Cell Line; Cytochalasin D; Cytosol; Enzyme Inhibitors; Epithelium; GTP-Binding Proteins; Humans; Inositol 1,4,5-Trisphosphate; Intestines; Isoenzymes; Kinetics; Leukotriene D4; Lovastatin; Membrane Proteins; Mevalonic Acid; Protein Prenylation; rhoB GTP-Binding Protein; Signal Transduction; Type C Phospholipases | 1996 |