cytochalasin-d has been researched along with indoleacetic-acid* in 6 studies
1 review(s) available for cytochalasin-d and indoleacetic-acid
Article | Year |
---|---|
Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton.
In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed. Topics: Actins; Arabidopsis; Biological Transport, Active; Cell Polarity; Cytochalasin D; Cytoskeleton; Gravitation; Indoleacetic Acids; NIMA-Interacting Peptidylprolyl Isomerase; Peptidylprolyl Isomerase; Plant Growth Regulators | 2000 |
5 other study(ies) available for cytochalasin-d and indoleacetic-acid
Article | Year |
---|---|
Mechanosensing and signal transduction in tendrils.
The perception of thigmic stimuli is a widespread phenomenon among plants with decisive meaning for the ability to survive. Beside a general sensitivity for mechanical stimuli many plants have evolved specialized organs with highly developed mechanisms to perceive and transduce the applied forces. Tendrils of Bryonia dioica and Pisum sativum have been chosen to study the effects of mechanical stimulation on plant physiology. Both types of tendrils, although exhibiting different morphology, respond to such a stimulus with a rapid coiling response to the dorsal side of the organ within minutes. The actual perception of the stimulus is most likely coupled to the cytoskeleton serving as the mediator between the physical stimulus and the biochemical response. Drugs affecting the status of the cytoskeleton were used to get more insights into this specific process. The results indicate that microtubuli (MT) play the most important role in the perception of thigmic stimuli in tendrils. Colchicine-mediated disruption of MT lead to total inhibition of the response to the thigmic stimulus in tendrils of Pisum and to a reduced response in Bryonia. Alamethicin, an ionophore that can mimic action potentials in membranes, was able to bypass this inhibition suggesting a direct involvement of MT in depolarization of the membranes. Auxin, however, which is also supposed to be involved in the regulation of the coiling response, failed to bypass colchicine-dependent inhibition. Vinblastine, another microtubule depolimerizing agent, did induce tendril coiling in Pisum without further stimulation. Application of taxol and other MT-stabilizing drugs as well as disruption of the actin network did not affect the coiling response of tendrils. In Pisum indole-3-acetic acid (IAA) is induced after mechanical stimulation during the coiling response, but not jasmonic acid. A further consequence of mechanical stimulation is the induction of an oxidative burst and an increase in soluble sugar. A model is presented integrating these results and might serve as a common basis for the understanding of the perception of mechanical stimuli. Topics: Alamethicin; Bryonia; Cell Wall; Colchicine; Cyclopentanes; Cytochalasin D; Cytoskeleton; Indoleacetic Acids; Mechanotransduction, Cellular; Microtubules; NAD; NADPH Oxidases; Oxylipins; Paclitaxel; Pisum sativum; Plant Components, Aerial; Plant Growth Regulators; Signal Transduction; Stress, Mechanical; Tubulin Modulators; Uncoupling Agents; Vinblastine | 2003 |
The actin cytoskeleton may control the polar distribution of an auxin transport protein.
The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport. Topics: Actins; Biological Transport; Carrier Proteins; Cytochalasin D; Cytoskeleton; Gravitropism; Hypocotyl; Indoleacetic Acids; Nucleic Acid Synthesis Inhibitors; Phthalimides; Plant Growth Regulators; Plant Proteins; Vegetables | 2000 |
Separation and characterization of the activated pool of colony-stimulating factor 1 receptor forming distinct multimeric complexes with signalling molecules in macrophages.
Colony-stimulating factor 1 (CSF-1) triggers the activation of intracellular proteins in macrophages through selective assembly of signalling complexes. The separation of multimeric complexes of the CSF-1 receptor (CSF-1R) by anion-exchange chromatography enabled the enrichment of low-stoichiometry complexes. A significant proportion of the receptor in CSF-1-stimulated cells that neither possessed detectable tyrosine kinase activity nor formed complexes was separated from the receptor pool displaying autokinase activity that formed chromatographically distinct multimeric complexes. A small pool of CSF-1R formed a multimeric complex with phosphatidylinositol-3 kinase (PI-3 kinase), SHP-1, Grb2, Shc, c-Src, Cbl, and a significant number of tyrosine-phosphorylated proteins in CSF-1-stimulated cells. The complex showed a considerable amount of CSF-1R complex-associated kinase activity. A detectable level of the complex was also present in untreated cells. PI-3 kinase in the multimeric complex displayed low lipid kinase activity despite the association with several proteins. The major pool of activated CSF-1R formed transient multimeric complexes with distinctly different tyrosine-phosphorylated proteins, which included STAT3 but also PI-3 kinase, Shc, SHP-1, and Grb2. A significant level of lipid kinase activity was detected in PI-3 kinase in the latter complexes. The different specific enzyme activities of PI-3 kinase in these complexes support the notion that the activity of PI-3 kinase is modulated by its association with CSF-1R and other associated cellular proteins. Specific structural proteins associated with the separate CSF-1R multimeric complexes upon CSF-1 stimulation and the presence of the distinct pools of the CSF-1R were dependent on the integrity of the microtubular network. Topics: Animals; Cell Line; Chromatography, Ion Exchange; Cytochalasin D; Indoleacetic Acids; Intracellular Signaling Peptides and Proteins; Macrophages; Mice; Models, Biological; Nocodazole; Phosphatidylinositol 3-Kinases; Phosphorylation; Phosphotransferases; Precipitin Tests; Protein Conformation; Protein Tyrosine Phosphatase, Non-Receptor Type 11; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Protein Tyrosine Phosphatases; Receptors, Colony-Stimulating Factor; Signal Transduction; Subcellular Fractions; Time Factors; Tyrosine | 1999 |
In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls.
The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo. Topics: Actins; Biological Transport; Carrier Proteins; Cucurbitaceae; Cytochalasin D; Cytoskeleton; Herbicides; Hypocotyl; Indoleacetic Acids; Phalloidine; Phthalimides; Plant Growth Regulators; Plant Proteins; Tromethamine | 1998 |
The auxin response of actin is altered in the rice mutant Yin-Yang.
The rice mutant Yin-Yang has been selected during a screen for resistance to cytoskeletal drugs and is characterized by alterations in epidermal cell length and a precocious onset of gravitropism. The elongation response of coleoptile segments to auxin does not reveal changes of auxin sensitivity in Yin-Yang. However, in contrast to the wild type, cell elongation in Yin-Yang is highly sensitive to the actin-polymerisation blocker cytochalasin D. This increased sensitivity to cytochalasin D requires optimal concentrations of auxin to become manifest. The auxin response of actin microfilaments in epidermal cells differs between wild type and mutant. In the wild type, the longitudinal microfilament bundles become loosened in response to auxin. In the mutant, these bundles disintegrate partially and are replaced by a network of short filaments surrounding the nucleus. Several aspects of the mutant phenotype can be mimicked in the wild type by treatment with cytochalasin D. The mutant phenotype is discussed in terms of signal-dependent changes of actin dynamics and the putative role of actin during cell elongation. Topics: Actin Cytoskeleton; Actins; Cell Division; Cell Physiological Phenomena; Cell Size; Cotyledon; Cytochalasin D; Dose-Response Relationship, Drug; Gravitropism; Indoleacetic Acids; Mutation; Oryza; Plant Epidermis; Plant Growth Regulators; Plant Proteins | 1998 |