cytochalasin-d and ethylisopropylamiloride

cytochalasin-d has been researched along with ethylisopropylamiloride* in 8 studies

Other Studies

8 other study(ies) available for cytochalasin-d and ethylisopropylamiloride

ArticleYear
Sequence-dependent internalization of aggregating peptides.
    The Journal of biological chemistry, 2015, Jan-02, Volume: 290, Issue:1

    Recently, a number of aggregation disease polypeptides have been shown to spread from cell to cell, thereby displaying prionoid behavior. Studying aggregate internalization, however, is often hampered by the complex kinetics of the aggregation process, resulting in the concomitant uptake of aggregates of different sizes by competing mechanisms, which makes it difficult to isolate pathway-specific responses to aggregates. We designed synthetic aggregating peptides bearing different aggregation propensities with the aim of producing modes of uptake that are sufficiently distinct to differentially analyze the cellular response to internalization. We found that small acidic aggregates (≤500 nm in diameter) were taken up by nonspecific endocytosis as part of the fluid phase and traveled through the endosomal compartment to lysosomes. By contrast, bigger basic aggregates (>1 μm) were taken up through a mechanism dependent on cytoskeletal reorganization and membrane remodeling with the morphological hallmarks of phagocytosis. Importantly, the properties of these aggregates determined not only the mechanism of internalization but also the involvement of the proteostatic machinery (the assembly of interconnected networks that control the biogenesis, folding, trafficking, and degradation of proteins) in the process; whereas the internalization of small acidic aggregates is HSF1-independent, the uptake of larger basic aggregates was HSF1-dependent, requiring Hsp70. Our results show that the biophysical properties of aggregates determine both their mechanism of internalization and proteostatic response. It remains to be seen whether these differences in cellular response contribute to the particular role of specific aggregated proteins in disease.

    Topics: Actin Cytoskeleton; Amiloride; Amino Acid Sequence; Cytochalasin D; DNA-Binding Proteins; Endocytosis; Endosomes; Heat Shock Transcription Factors; HEK293 Cells; HSP70 Heat-Shock Proteins; Humans; Hydrazones; Hydrogen-Ion Concentration; Kinetics; Lovastatin; Lysosomes; Molecular Sequence Data; Peptides; Protein Aggregates; Protein Binding; Protein Folding; Protein Transport; Proteolysis; Structure-Activity Relationship; Transcription Factors

2015
Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells.
    Cancer research, 2013, Feb-01, Volume: 73, Issue:3

    Bacille Calmette-Guerin (BCG) is an attenuated strain of Mycobacterium bovis that is used widely as a vaccine for tuberculosis and is used as an effective treatment for superficial bladder carcinoma. Despite being the most successful cancer biotherapy, its mechanism of action and response determinants remain obscure. Here, we establish a model system to analyze BCG interaction with bladder cancer cells, using it to show that these cells vary dramatically in their susceptibility to BCG infection. Unexpectedly, the uptake of BCG by bladder cancer cells occurs by macropinocytosis rather than phagocytosis. BCG entry into bladder cancer cells relied upon Rac1, Cdc42, and their effector kinase Pak1. The difference in susceptibility between BCG-permissive and -resistant bladder cancer cells was due to oncogenic activation of signaling pathways that activate macropinocytosis, with phosphoinositide 3-kinase inhibitor activation stimulating BCG uptake independently of Akt. Similarly, activated Ras strongly activated Pak1-dependent uptake of BCG. These results reveal that oncogenic activation of macropinocytosis determines BCG uptake by bladder cancer cells, implying that tumor responsiveness to BCG may be governed by the specific mutations present in the treated cancer cell.

    Topics: Amiloride; BCG Vaccine; cdc42 GTP-Binding Protein; Cell Line, Tumor; Clathrin; Cytochalasin D; Dynamins; Humans; p21-Activated Kinases; Phosphatidylinositol 3-Kinases; Pinocytosis; PTEN Phosphohydrolase; rac1 GTP-Binding Protein; ras Proteins; Staurosporine; Urinary Bladder Neoplasms

2013
Mechanism of ribonuclease A endocytosis: analogies to cell-penetrating peptides.
    Biochemistry, 2011, Oct-04, Volume: 50, Issue:39

    Pancreatic-type ribonucleases can exert toxic activity by catalyzing the degradation of cellular RNA. Their ability to enter cells is essential for their cytotoxicity. Here, we determine the mechanism by which bovine pancreatic ribonuclease (RNase A) enters human cells. Inhibiting clathrin-dependent endocytosis with dynasore or chlorpromazine decreases RNase A-uptake by ~70%. Limited colocalization between RNase A and transferrin indicates that RNase A is not routed through recycling endosomes. Instead, vesicular staining of RNase A overlaps substantially with that of nona-arginine and the cationic peptide corresponding to residues 47-57 of the HIV-1 TAT protein. At low concentrations (<5 μM), internalization of RNase A and these cell-penetrating peptides (CPPs) is inhibited by chlorpromazine as well as the macropinocytosis inhibitors cytochalasin D and 5-(N-ethyl-N-isopropyl)amiloride to a similar extent, indicative of common endocytic mechanism. At high concentrations, CPPs adopt a nonendocytic mechanism of cellular entry that is not shared by RNase A. Collectively, these data suggest that RNase A is internalized via a multipathway mechanism that involves both clathrin-coated vesicles and macropinosomes. The parallel between the uptake of RNase A and CPPs validates reference to RNase A as a "cell-penetrating protein".

    Topics: Amiloride; Animals; Cattle; Cell-Penetrating Peptides; Chlorpromazine; Cytochalasin D; Endocytosis; HeLa Cells; Humans; Hydrazones; Nystatin; Peptide Fragments; Ribonuclease, Pancreatic; tat Gene Products, Human Immunodeficiency Virus

2011
A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells.
    PloS one, 2010, Jun-29, Volume: 5, Issue:6

    Acid dependent infection of Hela and Vero cells by BTV-10 occurs from within early-endosomes following virus uptake by clathrin-mediated endocytosis (Forzan et al., 2007: J Virol 81: 4819-4827). Here we report that BTV-1 infection of BHK cells is also dependent on a low endosomal pH; however, virus entry and infection were not inhibited by dominant-negative mutants of Eps15, AP180 or the 'aa' splice variant of dynamin-2, which were shown to inhibit clathrin-mediated endocytosis. In addition, infection was not inhibited by depletion of cellular cholesterol, which suggests that virus entry is not mediated by a lipid-raft dependent process such as caveolae-mediated endocytosis. Although virus entry and infection were not inhibited by the dominant-negative dynamin-2 mutant, entry was inhibited by the general dynamin inhibitor, dynasore, indicating that virus entry is dynamin dependent. During entry, BTV-1 co-localised with LAMP-1 but not with transferrin, suggesting that virus is delivered to late-endosomal compartments without first passing through early-endosomes. BTV-1 entry and infection were inhibited by EIPA and cytochalasin-D, known macropinocytosis inhibitors, and during entry virus co-localised with dextran, a known marker for macropinocytosis/fluid-phase uptake. Our results extend earlier observations with BTV-10, and show that BTV-1 can infect BHK cells via an entry mechanism that is clathrin and cholesterol-independent, but requires dynamin, and shares certain characteristics in common with macropinocytosis.

    Topics: Amiloride; Animals; Bluetongue virus; Cell Line; Cholesterol; Clathrin; Cricetinae; Cytochalasin D; Endocytosis; Hydrogen-Ion Concentration; Membrane Fusion; Microscopy, Confocal; Microscopy, Fluorescence; Pinocytosis

2010
Kaposi's sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells.
    Journal of virology, 2009, Volume: 83, Issue:10

    Kaposi's sarcoma-associated herpesvirus (KSHV) utilizes clathrin-mediated endocytosis for its infectious entry into human foreskin fibroblast (HFF) cells (S. M. Akula, P. P. Naranatt, N.-S. Walia, F.-Z. Wang, B. Fegley, and B. Chandran, J. Virol. 77:7978-7990, 2003). Here, we characterized KSHV entry into primary human microvascular dermal endothelial (HMVEC-d) and human umbilical vein endothelial (HUVEC) cells. Similar to the results for HMVEC-d cells, KSHV infection of HUVEC cells also resulted in an initial high level and subsequent decline in the expression of the lytic switch gene, ORF50, while latent gene expression persisted. Internalized virus particles enclosed in irregular vesicles were observed by electron microscopy of infected HMVEC-d cells. At an early time of infection, colocalization of KSHV capsid with envelope was observed by immunofluorescence analysis, thus demonstrating endocytosis of intact enveloped virus particles. Chlorpromazine, an inhibitor of clathrin-mediated endocytosis, and filipin (C(35)H(58)O(11)), a caveolar endocytosis inhibitor, did not have any effect on KSHV binding, entry (DNA internalization), or gene expression in HMVEC-d and HUVEC cells. In contrast to the results for HFF cells, virus entry and gene expression in both types of endothelial cells were significantly blocked by macropinocytosis inhibitors (EIPA [5-N-ethyl-N-isoproamiloride] and rottlerin [C(30)H(28)O(8)]) and by cytochalasin D, which affects actin polymerization. Inhibition of lipid raft blocked viral gene expression in HMVEC-d cells but not in HUVEC or HFF cells. In HMVEC-d and HUVEC cells, KSHV induced the actin polymerization and formation of lamellipodial extensions that are essential for macropinocytosis. Inhibition of macropinocytosis resulted in the distribution of viral capsids at the HMVEC-d cell periphery, and capsids did not associate with microtubules involved in the nuclear delivery of viral DNA. Internalized KSHV in HMVEC-d and HUVEC cells colocalized with the macropinocytosis marker dextran and not with the clathrin pathway marker transferrin or with caveolin. Dynasore, an inhibitor of dynamin, did not block viral entry into endothelial cells but did inhibit entry into HFF cells. KSHV was not associated with the early endosome marker EEA-1 in HMVEC-d cells, but rather with the late endosome marker LAMP1, as well as with Rab34 GTPase that is known to regulate macropinocytosis. Silencing Rab34 with small interfering RNA dramatically inhib

    Topics: Acetophenones; Actins; Amiloride; Benzopyrans; Cells, Cultured; Chlorpromazine; Clathrin; Cytochalasin D; DNA, Viral; Endothelial Cells; Fibroblasts; Filipin; Gene Expression Regulation, Viral; Herpesvirus 8, Human; Humans; Hydrogen-Ion Concentration; Immediate-Early Proteins; Pinocytosis; rab GTP-Binding Proteins; Trans-Activators; Umbilical Veins; Virus Internalization

2009
Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides.
    Peptides, 2009, Volume: 30, Issue:9

    Generally, biomacromolecules, such as DNA, RNA, and proteins, cannot freely permeate into cells from outside the membrane. Protein transduction domains (PTDs) are peptides containing a large number of basic amino acids that can deliver macromolecules into living cells. Arginine-rich intracellular delivery (AID) peptides are more effective than other PTD peptides at carrying large molecules across cellular membranes. In the present study, we demonstrated that AID peptides are able to deliver cargo proteins into living cells in both covalent and noncovalent protein transductions (CNPT) synchronously. Human A549 cells were treated with a fluorescent protein (FP) that was noncovalently premixed with another AID-conjugated FP, which emitted a different color. After the delivery of carrier AID-FP and cargo FP into cells, the emission and merge of fluorescence were observed and recorded with a confocal microscope, while the internalization efficiency was quantitatively analyzed with a flow cytometer. The optimal molecular ratio between carrier AID-FP and cargo FP for CNPT is about 1:1/3. Fluorescence resonance energy transfer (FRET) assay further confirmed AID-conjugates can physically interact with its cargo FPs in CNPT in cells. Potential uptake mechanisms of CNPT may involve a combination of multiple internalization pathways. After delivery, intracellular distributions of AID-conjugates and FPs may possibly colocalize with lysosomes. These results will facilitate the understanding of multiple mechanisms of PTDs, and provide a powerful tool for simultaneously delivering several proteins or compounds in protein internalization.

    Topics: Amiloride; Arginine; beta-Cyclodextrins; Cell Line, Tumor; Cell Membrane; Cell Survival; Chlorates; Cytochalasin D; Drug Carriers; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; Humans; Luminescent Proteins; Lysosomes; Mitochondria; Nocodazole; Oligopeptides; Peptides; Pinocytosis; Plasmids; Protein Transport; Recombinant Fusion Proteins; Red Fluorescent Protein; Temperature

2009
Axial flow modulates proximal tubule NHE3 and H-ATPase activities by changing microvillus bending moments.
    American journal of physiology. Renal physiology, 2006, Volume: 290, Issue:2

    We have previously demonstrated that mouse proximal tubules in vitro respond to changes in luminal flow with proportional changes in Na+ absorption (Du Z, Duan Y, Yan Q, Weinstein AM, Weinbaum S, and Wang T. Proc Natl Acad Sci USA 101: 13068-13073, 2004). It was hypothesized that brush-border microvilli function as a sensor to detect and amplify luminal hydrodynamic forces and transmit them to the actin cytoskeleton. In the present study we examine whether 1) flow-dependent HCO3- transport is proportional to flow-dependent variations in microvillous torque (bending moment); 2) both luminal membrane Na(+)/H+ exchange (NHE3) and H(+)-ATPase activity are modulated by axial flow; and 3) paracellular permeabilities contribute to the flux perturbations. HCO3- absorption is examined by microperfusion of mouse S2 proximal tubules in vitro, with varying perfusion rates, and in the presence of the Na/H-exchange inhibitor EIPA, the H(+)-ATPase inhibitor bafilomycin, and the actin cytoskeleton inhibitor cytochalasin D. Paracellular permeability changes are assessed with measurements of epithelial HCO3- permeability and transepithelial potential difference (PD). It is found that 1) an increase in perfusion rate enhances HCO3- absorption and microvillous torque, and the fractional changes of each are nearly identical; 2) inhibition of NHE3 by EIPA, or H(+)-ATPase by bafilomycin, produced only partial inhibition of flow-stimulated bicarbonate transport; 3) disruption of the actin cytoskeleton by cytochalasin D blocked the increment of HCO3- absorption by high flow; and 4) HCO3- permeability and transepithelial PD are not modulated by flow. We conclude that flow-dependent modulation of proximal tubule HCO3- reabsorption is due to changes in both NHE3 and H(+)-ATPase activity within the luminal cell membrane and this requires an intact actin cytoskeleton. Paracellular permeability changes do not contribute to this flow dependence. Perfusion-absorption balance in the proximal tubule is a direct effect of flow-induced torque on brush-border microvilli to regulate luminal cell membrane transporter activity.

    Topics: Amiloride; Animals; Bicarbonates; Biological Transport; Cytochalasin D; In Vitro Techniques; Kidney Tubules, Proximal; Macrolides; Mice; Mice, Inbred C57BL; Mice, Knockout; Microvilli; Perfusion; Proton-Translocating ATPases; Sodium; Sodium Channel Blockers; Sodium-Hydrogen Exchanger 3; Sodium-Hydrogen Exchangers; Torque

2006
Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry.
    Developmental biology, 1989, Volume: 133, Issue:1

    The trophectoderm of the mouse blastocyst is a fluid transporting epithelium that is responsible for generating a fluid-filled cavity called the blastocoel. Vectorial transport of ions from the medium into the blastocoel generates an osmotic gradient that drives fluid across this epithelium. We report here that substitution of Na+ or Cl-, but not K+, in the medium halves the rate of blastocoel expansion in the mouse blastocyst. Entrance of Na+ into the trophectoderm may involve several routes, since both blastocoel expansion and 22Na+ uptake are decreased in the presence of the highly specific Na+/H+ exchanger inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, and to a lesser extent with the amiloride-sensitive Na+-channel blocker, benzamil. Uptake of 22Na+ manifests saturation kinetics as a function of extracellular Na+ concentration, whereas uptake of 36Cl- is linear. Furthermore, neither 4,4-diisothiocyanostilbene-2,2-disulfonic acid, which is an inhibitor of the Cl-/HCO3- exchanger, nor 2-(3,4-dichlorobenzyl)-5-nitrobenzoic acid, which is a Cl- -channel blocker, affect either blastocoel expansion or 36Cl- uptake. These results suggest that Na+ entry into the mouse blastocyst is carrier-mediated and probably involves several routes that include the Na+/H+ exchanger and possibly the Na+-channel. Chloride entry, however, may not be carrier-mediated and may occur through a paracellular route, i.e., between the trophectodermal cells.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Adenosine Triphosphate; Amiloride; Animals; Biological Transport; Blastocyst; Carrier Proteins; Chloride Channels; Chloride-Bicarbonate Antiporters; Chlorides; Cytochalasin D; Cytochalasins; Ectoderm; Epithelium; Kinetics; Membrane Proteins; Mice; Nitrobenzoates; Potassium; Sodium; Sodium Channels; Sodium-Hydrogen Exchangers

1989