cytochalasin-a has been researched along with jasplakinolide* in 4 studies
4 other study(ies) available for cytochalasin-a and jasplakinolide
Article | Year |
---|---|
Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites.
Integrin-mediated mechanotransduction in vascular smooth muscle cells (VSMCs) plays an important role in the physiological control of tissue blood flow and vascular resistance. To test whether force applied to specific extracellular matrix (ECM)-integrin interactions could induce myogenic-like mechanical activity at focal adhesion sites, we used atomic force microscopy (AFM) to apply controlled forces to specific ECM adhesion sites on arteriolar VSMCs. The tip of AFM probes were fused with a borosilicate bead (2 ~ 5 microm) coated with fibronectin (FN), collagen type I (CNI), laminin (LN), or vitronectin (VN). ECM-coated beads induced clustering of alpha(5)- and beta(3)-integrins and actin filaments at sites of bead-cell contact indicative of focal adhesion formation. Step increases of an upward (z-axis) pulling force (800 ~ 1,600 pN) applied to the bead-cell contact site for FN-specific focal adhesions induced a myogenic-like, force-generating response from the VSMC, resulting in a counteracting downward pull by the cell. This micromechanical event was blocked by cytochalasin D but was enhanced by jasplakinolide. Function-blocking antibodies to alpha(5)beta(1)- and alpha(v)beta(3)-integrins also blocked the micromechanical cell event in a concentration-dependent manner. Similar pulling experiments with CNI, VN, or LN failed to induce myogenic-like micromechanical events. Collectively, these results demonstrate that mechanical force applied to integrin-FN adhesion sites induces an actin-dependent, myogenic-like, micromechanical event. Focal adhesions formed by different ECM proteins exhibit different mechanical characteristics, and FN appears of particular relevance in its ability to strongly attach to VSMCs and to induce myogenic-like, force-generating reactions from sites of focal adhesion in response to externally applied forces. Topics: Animals; Cells, Cultured; Collagen Type I; Cytochalasins; Depsipeptides; Extracellular Matrix; Focal Adhesions; Integrin alpha5beta1; Integrin alphaVbeta3; Laminin; Microcirculation; Microscopy, Atomic Force; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Rats; Rats, Sprague-Dawley; Stress, Mechanical; Vitronectin | 2008 |
Role of actin cytoskeletal dynamics in activation of the cyclic AMP pathway and HWP1 gene expression in Candida albicans.
Changes in gene expression during reversible bud-hypha transitions of the opportunistic fungal pathogen Candida albicans permit adaptation to environmental conditions that are critical for proliferation in host tissues. Our previous work has shown that the hypha-specific adhesin gene HWP1 is up-regulated by the cyclic AMP (cAMP) signaling pathway. However, little is known about the potential influences of determinants of cell morphology on HWP1 gene expression. We found that blocking hypha formation with cytochalasin A, which destabilizes actin filaments, and with latrunculin A, which sequesters actin monomers, led to a loss of HWP1 gene expression. In contrast, high levels of HWP1 gene expression were observed when the F-actin stabilizer jasplakinolide was used to block hypha formation, suggesting that HWP1 expression could be regulated by actin structures. Mutants defective in formin-mediated nucleation of F-actin were reduced in HWP1 gene expression, providing genetic support for the importance of actin structures. Kinetic experiments with wild-type and actin-deficient cells revealed two distinct phases of HWP1 gene expression, with a slow, actin-independent phase preceding a fast, actin-dependent phase. Low levels of HWP1 gene expression that appeared to be independent of stabilized actin and cAMP signaling were detected using indirect immunofluorescence. A connection between actin structures and the cAMP signaling pathway was shown using hyper- and hypomorphic cAMP mutants, providing a possible mechanism for up-regulation of HWP1 gene expression by stabilized actin. The results reveal a new role for F-actin as a regulatory agent of hypha-specific gene expression at the bud-hypha transition. Topics: Actins; Bridged Bicyclo Compounds, Heterocyclic; Candida albicans; Cell Polarity; Cyclic AMP; Cytochalasins; Cytoskeleton; Depsipeptides; Fluorescent Antibody Technique; Fungal Proteins; Gene Expression Regulation, Fungal; Hyphae; Kinetics; Membrane Glycoproteins; Models, Biological; Mutation; Protein Transport; Thiazolidines | 2007 |
Movement of stress fibers away from focal adhesions identifies focal adhesions as sites of stress fiber assembly in stationary cells.
Force generated in contractile actin filament bundles (stress fibers-SFs) is transmitted to the extracellular matrix (ECM) via linker proteins and transmembrane integrins at focal adhesions (FAs). Though it has long been known that actin is rapidly exchanged in FAs, the connection between SFs and FAs has not been studied in detail. We introduced fiduciary marks on SFs by expressing GFP-palladin or GFP-alpha-actinin-1, which are both FA and dense body proteins, and by pattern bleaching of GFP-actin. Following fiduciary marks on SFs over time by time-lapse fluorescence microscopy, we detected assembly of SFs at FAs in stationary cells resulting in movement of SFs away from FAs with a velocity of 0.2-0.4 microm/min. Visualization of FAs in GFP-palladin/DsRed-paxillin double transfected cells showed that SF elongation was not accompanied by a change in FA length. SF elongation at FAs depended on actin polymerization and force as demonstrated by inhibitors of actin polymerization (cytochalasin D, jasplakinolide) and inhibitors of myosin-dependent contraction (blebbistatin, Y-27632), respectively. Our finding of SF assembly at FAs has important implications for SF formation, force transmission, and tension distribution within the actin cytoskeletal network of stationary cells. Topics: Actinin; Actins; Animals; Cell Movement; Cytochalasins; Cytoskeletal Proteins; Cytoskeleton; Depsipeptides; Focal Adhesions; Green Fluorescent Proteins; Mice; NIH 3T3 Cells; Phosphoproteins; Stress Fibers | 2007 |
PKC-dependent stimulation of EAAT3 glutamate transporter does not require the integrity of actin cytoskeleton.
The activity and the membrane expression of EAAT3 glutamate transporter are stimulated upon PKC activation by phorbol esters in C6 rat glioma cells. To investigate the role of cytoskeleton in these effects, we have employed actin-perturbing toxins and found that the perturbation of actin cytoskeleton inhibits basal but not phorbol-stimulated EAAT3 activity and membrane trafficking. In the absence of phorbols, latrunculin A, a toxin that disassembles actin cytoskeleton, produced a rapid inhibition of EAAT3 activity, due to a decrease in transport V(max). The inhibitory effect was fully reversible and was not detected for other sodium dependent transport systems for amino acids. However, latrunculin did not prevent the increase in transport caused by phorbol esters and, moreover, cells pre-treated with phorbols were resistant to the inhibitory effect of the toxin on EAAT3 activity. Biotinylation experiments indicated that the inhibitory effect of latrunculin was attributable to a decreased expression of the carrier on the membrane, while the toxin did not suppress the PKC-dependent increase in EAAT3 membrane abundance. Latrunculin A effects on EAAT3 were shared by cytochalasin D, a toxin that disorganizes actin filaments with a distinct mechanism of action. On the contrary, a small, but significant, increase of EAAT3 activity was observed upon incubation with jasplakinolide, a drug that stabilizes actin microfilaments. Also jasplakinolide, however, did not hinder phorbol-dependent stimulation of aspartate transport. Colchicine, a toxin that disrupts microtubules, also lowered EAAT3 activity without preventing transport stimulation by phorbols, while microtubule stabilization by paclitaxel led to an increase in aspartate transport. It is concluded that, in C6 cells, the PKC-mediated stimulatory effects on EAAT3 are cytoskeleton-independent, while in the absence of phorbols, the transporter is partially inhibited by the disorganization of either actin microfilaments or microtubules. These results suggest that EAAT3 trafficking in C6 cells involves different pools of transporters. Topics: Actin Cytoskeleton; Animals; Antineoplastic Agents; Bridged Bicyclo Compounds, Heterocyclic; Cell Line, Tumor; Cytochalasins; Depsipeptides; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Transporter 3; Glutamic Acid; Microtubules; Neurons; Phorbol Esters; Protein Kinase C; Protein Transport; Rats; Thiazoles; Thiazolidines | 2006 |