cytellin has been researched along with fusicoccin* in 1 studies
1 other study(ies) available for cytellin and fusicoccin
Article | Year |
---|---|
Characterization of sterol uptake in leaf tissues of sugar beet.
The uptake of cholesterol has been characterized in leaf discs from mature leaves of sugar beet ( Beta vulgaris L.). This transport system exhibited a simple saturable phase with an apparent Michaelis constant ranging from 30 to 190 microM depending on the sample. When present at 10 M excess, other sterols were able to inhibit cholesterol uptake. Moreover, binding assays demonstrated the presence of high-affinity binding sites for cholesterol in purified plasma membrane vesicles. In the range 1-60 microM, cholesterol uptake showed an active component evidenced by action of the protonophore carbonyl cyanide m-chlorophenylhydrazone. Energy was required as shown by the inhibition of uptake induced by respiration inhibitors (NaN(3)), darkness and photosynthesis inhibitors [3-(3,4-dichlorophenyl)-1,1-dimethylurea, methyl viologen]. Moreover, the process was strongly dependent on the experimental temperature. Uptake was optimal at acidic pH (4.0), sensitive to ATPase modulators, inhibited by thiol reagents (N-ethylmaleimide, p-chloromercuribenzenesulfonic acid, Mersalyl) and by the histidyl-group reagent diethyl pyrocarbonate. The addition of cholesterol did not modify H(+) flux from tissues, indicating that H(+)-co-transport was unlikely to be involved. MgATP did not increase the uptake, arguing against involvement of an ABC cassette-type transporter. By contrast, cryptogein, a sterol carrier protein from the Oomycete Phytophtora cryptogea, greatly increased absorption. Taken together, the results reported in this work suggest that plant cells contain a specific plasma membrane transport system for sterols. Topics: Adenosine Triphosphatases; Beta vulgaris; Binding Sites; Binding, Competitive; Cholesterol; Dose-Response Relationship, Drug; Drug Antagonism; Ergosterol; Glycosides; Hydrogen-Ion Concentration; Plant Leaves; Sitosterols; Stigmasterol; Sulfhydryl Compounds; Temperature; Time Factors | 2003 |