cytellin and 1-2-dioleoyl-sn-glycero-3-phosphoglycerol

cytellin has been researched along with 1-2-dioleoyl-sn-glycero-3-phosphoglycerol* in 1 studies

Other Studies

1 other study(ies) available for cytellin and 1-2-dioleoyl-sn-glycero-3-phosphoglycerol

ArticleYear
The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead(II) ions in the organization of model lipid membranes.
    Colloids and surfaces. B, Biointerfaces, 2016, Jul-01, Volume: 143

    Auxins are successfully used to improve phytoextraction efficiency of metal ions from the contaminated environment, however, the mechanism of their activity in this field is not explained. Auxins are known to exert various biochemical alterations in the plant membranes and cells, but their activity involves also direct interactions with lipids leading to changes in membrane organization. Following the suggestion that the auxins-induced modifications in membrane properties alleviate toxic effect of metal ions in this paper we have undertaken the comparative studies on the effect of metal ions and metal ions/auxins mixtures on model membrane systems. The experiments were done on lipid monolayers differing in their composition spread on water subphase and on Pb(2+), Indole-3-acetic acid (IAA), 1-Naphthaleneacetic acid (NAA) and Pb(2+)/IAA and Pb(2+)/NAA water solutions. The analysis of the collected data suggests that metal ions and auxins can change fluidity of the lipid systems and weaken the interactions between monolayer components. This manifested in the increase of the mean area per molecule and the excess area per molecule values for the films on Pb(2+), auxins as well as Pb(2+)/auxin solutions as compared to the values on pure water subphase. However, the presence of auxin in the mixture with lead(II) ions makes the alterations induced by sole metal ions weaker. This effect was more pronounced for the membranes of a higher packing. Thus it was proposed that auxins may enhance phytoextraction of metal ions by weakening their destabilizing effect on membrane.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Brassica; Cations, Divalent; Cell Membrane; Indoleacetic Acids; Lead; Liquid Phase Microextraction; Naphthaleneacetic Acids; Phosphatidylcholines; Phosphatidylglycerols; Plant Cells; Sitosterols; Soil Pollutants; Unilamellar Liposomes

2016