cysteinyldopa has been researched along with pyrrole-2-3-5-tricarboxylic-acid* in 2 studies
2 other study(ies) available for cysteinyldopa and pyrrole-2-3-5-tricarboxylic-acid
Article | Year |
---|---|
Changes in the proliferation and differentiation of neonatal mouse pink-eyed dilution melanocytes in the presence of excess tyrosine.
Changes in the proliferation and differentiation of epidermal melanocytes derived from newborn mice wild-type at the pink-eyed dilution (p) locus (P/P) and from congenic mice mutant at that locus (p/p) were investigated in serum-free primary culture, with or without the addition of L-Tyr. Incubation with added L-Tyr inhibited the proliferation of P/P melanocytes in a concentration-dependent manner and inhibition was gradually augmented as the donor mice aged. In contrast, L-Tyr stimulated the proliferation of p/p melanoblasts-melanocytes derived from 0.5-day-old mice, but inhibited their proliferation when derived from 3.5- or 7.5-day-old mice. L-Tyr stimulated the differentiation of P/P melanocytes. However, almost all cells were undifferentiated melanoblasts in control cultures derived from 0.5-, 3.5- and 7.5-day-old p/p mice, but L-Tyr induced their differentiation as the age of the donor mice advanced. The content of the eumelanin marker, pyrrole-2,3,5-tricarboxylic acid as well as the pheomelanin marker, 4-amino-3-hydroxyphenylalanine in p/p melanocytes was greatly reduced compared with P/P melanocytes. However, the contents of eumelanin and its precursor, 5,6-dihydroxyindole-2-carboxylic acid, as well as the contents of pheomelanin and its precursor, 5-S-cysteinyldopa in culture media from p/p melanocytes were similar to those of P/P melanocytes at all ages tested. L-Tyr increased the content of eumelanin and pheomelanin two- to threefold in cultured cells and media derived from 0.5-, 3.5- and 7.5-day-old mice. These results suggest that the proliferation of p/p melanoblasts-melanocytes is stimulated by L-Tyr, and that the differentiation of melanocytes is induced by L-Tyr as the age of the donor mice advanced, although eumelanin and pheomelanin fail to accumulate in p/p melanocytes and are released from them at all ages of skin development. Topics: Animals; Animals, Newborn; Cell Differentiation; Cell Division; Cells, Cultured; Culture Media, Serum-Free; Cysteinyldopa; Indoles; Melanins; Melanocytes; Mice; Mice, Congenic; Mice, Transgenic; Mutation; Pyrroles; Tyrosine | 2003 |
Melanins in IGR 1 melanoma cells.
Information on the composition of melanins is obtained by analysis both of 4-amino-3-hydroxyphenylalanine (AHP) after hydriodic acid degradation and of pyrrole-2,3,5-tricarboxylic acid (PTCA) after potassium permanganate oxidation. Analysis of thiazole-4,5-dicarboxylic acid (TDCA) and pyrrole-2,3-dicarboxylic acid (PDCA) after permanganate oxidation, provides additional information on the composition, TDCA on pheomelanin residues, and PDCA on indolic residues without carboxy groups. Using model melanins formed from dopa and cysteinyldopa in different proportions, we found the TDCA/(PTCA+PDCA) ratio to yield a reliable estimate of the relative proportions of pheomelanin and eumelanin. The PDCA/PTCA ratio reflects the relationship between indole residues with and without carboxy groups. We have analyzed degradation products from cultures of IGR 1, an extensively studied melanoma cell line. Cell cultures were harvested after 2, 4, and 7 days. Culture media were changed after 2 days in all series, and also after 4 days in one series harvested at 7 days. Cells without medium change had seven times the amount of melanin found in cultures with medium change. The PDCA/PTCA ratio decreased with increasing amounts of melanin. With increased melanization, eumelanin is increased relatively more than pheomelanin. The cell content of 5-S-cysteinyldopa (5-S-CD) was similar in all cultures, while 6-hydroxy-5-methoxyindole-2-carboxylic acid (6H5MICA), a eumelanin precursor metabolite, was found in increased amounts of media of heavily pigmented cultures. Topics: Chromatography, Liquid; Cysteinyldopa; Dicarboxylic Acids; Humans; Hydrolysis; Mass Spectrometry; Melanins; Melanoma; Monophenol Monooxygenase; Neoplasm Proteins; Oxidation-Reduction; Potassium Permanganate; Pyrroles; Sulfur; Thiazoles; Tumor Cells, Cultured; Tyrosine | 1994 |