cysteinyldopa and hydroiodic-acid

cysteinyldopa has been researched along with hydroiodic-acid* in 2 studies

Other Studies

2 other study(ies) available for cysteinyldopa and hydroiodic-acid

ArticleYear
Chemical analysis of late stages of pheomelanogenesis: conversion of dihydrobenzothiazine to a benzothiazole structure.
    Pigment cell & melanoma research, 2009, Volume: 22, Issue:4

    Pheomelanogenesis is a complex pathway that starts with the oxidation of tyrosine (or DOPA, 3,4-dihydroxyphenylalanine) by tyrosinase in the presence of cysteine, which results in the production of 5-S-cysteinyldopa and its isomers. Beyond that step, relatively little has been clarified except for a possible intermediate produced, dihydro-1,4-benzothiazine-3-carboxylic acid (DHBTCA). We therefore carried out a detailed study on the course of pheomelanogenesis using DOPA and cysteine and the physiological enzyme tyrosinase. To elucidate the later stages of pheomelanogenesis, chemical degradative methods of reductive hydrolysis with hydroiodic acid and alkaline peroxide oxidation were applied. The results show that: (1) DHBTCA accumulates after the disappearance of the cysteinyldopa isomers, (2) DHBTCA is then oxidized by a redox exchange with dopaquinone to form ortho-quinonimine, which leads to the production of pheomelanin with a benzothiazine moiety, and (3) the benzothiazine moiety gradually degrades to form a benzothiazole moiety. This latter process is consistent with the much higher ratio of benzothiazole-derived units in human red hair than in mouse yellow hair. These findings may be relevant to the (photo)toxic effects of pheomelanin.

    Topics: Acids; Alanine; Animals; Benzothiazoles; Cysteine; Cysteinyldopa; Dihydroxyphenylalanine; Hair Color; Humans; Hydrolysis; Iodine Compounds; Melanins; Mice; Monophenol Monooxygenase; Oxidation-Reduction; Peroxides; Thiazines

2009
HPLC analysis of pheomelanin degradation products in human urine.
    Pigment cell research, 2003, Volume: 16, Issue:5

    A sensitive and specific high performance liquid chromatography (HPLC) method was developed to quantify 4-amino-3-hydroxyphenylalanine (4-AHP) and 3-amino-4-hydroxyphenylalanine (3-AHP) in urine. In degradation studies of melanin pigment, 4-AHP and 3-AHP are derived from benzothiazine units of pheomelanin and pheomelanin-related metabolites such as trichochromes. 5-S-Cysteinyldopa-derived benzothiazine products give 4-AHP while 2-S-cysteinyldopa-derived benzothiazine products give 3-AHP. 3-AHP is also derived from nitrotyrosine formed by nitration of tyrosine with reactive nitrogen species. For this reason, the influence of this biological process on the amount of 3-AHP found in biological material have been investigated. The method is based on hydriodic acid hydrolysis of the melanin polymer and reversed-phase HPLC with electrochemical detection of the degradation products 4-AHP and 3-AHP. The mobile phase consists of 25 mM ammonium acetate and sodium octanesulfonate as an ion-pairing reagent. The 4-AHP and 3-AHP peaks were well separated and the detector response was linear within the range 0-2 ng injected for both compounds. With the developed chromatographic system, 4-AHP and 3-AHP showed good separation in the biological samples. There was a strong correlation between 4-AHP and 3-AHP in the urine of 50 malignant melanoma patients and two healthy subjects (R0.977). The two compounds were also strongly correlated with 5-S-cysteinyldopa in urine, the correlation coefficients being 0.862 and 0.907, respectively. The method described is sensitive enough for analysis of pheomelanin in urine and in several other biological samples. The results indicate that 3-AHP in urine is not influenced by excreted 3-nitrotyrosine and the data indicate that pheomelanins are excreted in the urine of melanoma patients.

    Topics: Acids; Chromatography, High Pressure Liquid; Cysteinyldopa; Hair; Humans; Hydrolysis; Iodine Compounds; Isomerism; Melanins; Melanoma; Tyrosine

2003