cysteinyldopa has been researched along with catechol* in 3 studies
1 review(s) available for cysteinyldopa and catechol
Article | Year |
---|---|
Pulse radiolysis studies of ortho-quinone chemistry relevant to melanogenesis.
The contributions of pulse radiolysis towards characterisation of unstable ortho-quinones relevant to melanogenesis are reviewed. The quinones discussed include dopaquinone, the precursor of both eumelanogenesis and phaeomelanogenesis, and 5-S-cysteinyldopaquinone, an early component of the phaeomelanogenic pathway. Redox exchange between dopaquinone and 5-S-cysteinyldopa is shown to be a determinant of the balance between eumelanogenesis and phaeomelanogenesis. Ortho-quinones resulting from the oxidation of tertiary N,N-dialkylcatecholamines cyclise to redox-inactive betaines which fail to autoactivate tyrosinase. This is consistent with the dopa detected during melanogenesis catalysed by tyrosinase being formed indirectly by a combination of dopaquinone intramolecular reductive addition to form leucodopachrome (cyclodopa), followed by redox exchange between remaining dopaquinone and leucodopachrome. Rapid tautomerism of the ortho-quinone of 4-cyanomethylcatechol to a redox-inactive quinomethane likewise inhibits tyrosinase autoactivation. The incorporation of trihydric phenol moieties in melanin is modelled by the reactions of several ortho-quinones with phloroglucinol, which itself is not directly oxidised by tyrosinase due to the meta-positioning of the hydroxyl groups. The importance of a susceptibility towards nucleophilic attack as well as a propensity to undergo redox-exchange, in the chemistry of melanogenic ortho-quinones, is emphasised. Topics: Benzoquinones; Catechols; Cysteine; Cysteinyldopa; Dihydroxyphenylalanine; Enzyme Activation; Humans; Melanins; Molecular Structure; Monophenol Monooxygenase; Oxidation-Reduction; Phloroglucinol; Pulse Radiolysis; Quinones | 2001 |
2 other study(ies) available for cysteinyldopa and catechol
Article | Year |
---|---|
Characterization of catechol-thioether-induced apoptosis in human SH-SY5Y neuroblastoma cells.
Recent work has highlighted the involvement of a dopamine derivative, 5-S-cysteinyl-dopamine (CysDA), in neurodegeneration and apoptotic cell death. In this paper we study in further detail the apoptotic process activated by this catechol-thioether derivative of dopamine in SH-SY5Y neuroblastoma cells. CysDA activates a cascade of events by an initial perturbation of Calcium homeostasis in the cell. Cell treatment with the catechol-thioether induces an immediate rise in intracellular Ca(2+) concentration, as demonstrated by a shift in the indo-1 dye emission spectrum, and a sustained high calcium concentration at long times of incubation. Fluorescence microscopy data show that the treatment of cells induces mitochondrial transmembrane potential depolarization, a clear evidence of the onset of apoptotic process. Programmed cell death activation is also demonstrated by cytochrome c release from the mitochondria, by an increased activity of both caspase-8 and -9 and by the poly(ADP-ribose)polymerase (PARP-1) cleavage, yielding the typical 86 kDa fragment due to caspase-3 activity. Overall, our data support the hypothesis that CysDA may induce apoptotic death in neuronal cells, via an initial perturbation of calcium homeostasis in the cytosol. Topics: Apoptosis; Blotting, Western; Calcium; Catechols; Cell Line, Tumor; Cysteinyldopa; Cytochromes c; Humans; Membrane Potentials; Microscopy, Fluorescence; Mitochondria; Neuroblastoma; Neurons; Poly(ADP-ribose) Polymerases; Signal Transduction | 2008 |
Exploitation of pigment biosynthesis pathway as a selective chemotherapeutic approach for malignant melanoma.
Human malignant melanoma represents a difficult therapeutic challenge to both medical scientists and practicing physicians. However, the biologic uniqueness of the tumor may provide opportunities for exploitation in therapeutics. This study proposed to undertake a systemic approach to the chemotherapy of malignant melanoma based upon the uniqueness of pigment-cell metabolic pathway pertaining to conversion of tyrosine and dopa with subsequent formation of melanin by tyrosinase and its related enzymes. The sulphur homologue of tyrosine, cysteinylphenol (CP), its amine derivative, cysteaminylphenol (CAP), and their N-acetyl and alpha-methyl derivatives have been synthesized and tested in in vivo and in vitro melanocytotoxicity and antimelanoma effects. These phenolic thioethers (PTEs) and phenolic thioether amine (amides) (PTEAs), which are substrates of tyrosinase, showed significant cytotoxicity that is selective to melanocytes and melanoma cells. Most previous attempts to impair the melanin pathway as a therapeutic strategy have been of limited success because they have been directed to catecholic compounds that are unstable and insufficient in lethality at physiologically tolerable doses. By contrast, our approach relies on phenolic compounds, PTEs and PTEAs, which are more stable than catechols and become toxic only after oxidation by tyrosinase. We found PTEA as the most promising agent for the future development of chemotherapeutic agents. The possible biologic, chemical, and pharmacologic reactions of these synthetic compounds within the melanoma cells are studied and discussed. Topics: Benzoquinones; Catechols; Cysteinyldopa; Dihydroxyphenylalanine; Dopamine; Humans; Indoles; Melanins; Melanoma; Models, Chemical; Phenol; Phenols; Pigments, Biological; Tyrosine | 1993 |