cysteine has been researched along with bortezomib in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 5 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Amerik, AY; Issaenko, OA | 1 |
Chan, SM; Feng, W; Huang, M; Li, MX; Majeti, R; Mitchell, BS; Thomas, D | 1 |
Itoh, K; Liu, T; Maruyama, A; Mimura, J; Ohyama, C; Okada, T; Sato, H; Ye, P | 1 |
Baranowska, KA; Bjørkøy, G; Buene, G; Hella, H; Holien, T; Johansson, I; Misund, K; Sponaas, AM; Starheim, KK; Sundan, A; Waage, A | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
1 review(s) available for cysteine and bortezomib
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
4 other study(ies) available for cysteine and bortezomib
Article | Year |
---|---|
Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes.
Topics: Antineoplastic Agents; Apoptosis; Benzylidene Compounds; Boronic Acids; Bortezomib; Breast Neoplasms; Catalytic Domain; Cell Cycle Checkpoints; Cell Proliferation; Cell Survival; Chalcone; Cyclin D1; Cysteine; Dose-Response Relationship, Drug; Endopeptidases; Female; HeLa Cells; Humans; Ovarian Neoplasms; Phenotype; Piperidones; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Tumor Suppressor Protein p53; Ubiquitin Thiolesterase; Ubiquitins | 2012 |
Role of cysteine 288 in nucleophosmin cytoplasmic mutations: sensitization to toxicity induced by arsenic trioxide and bortezomib.
Topics: Acetylcysteine; Antineoplastic Agents; Apoptosis; Arsenic Trioxide; Arsenicals; Boronic Acids; Bortezomib; Cell Nucleolus; Cell Proliferation; Cysteine; Cytosol; Drug Resistance, Neoplasm; Flow Cytometry; Free Radical Scavengers; Humans; Leukemia, Myeloid, Acute; Mutation; Nuclear Proteins; Nucleophosmin; Oxides; Pyrazines; Reactive Oxygen Species; Tryptophan; Tumor Cells, Cultured | 2013 |
Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition.
Topics: Activating Transcription Factor 4; Amino Acid Transport System y+; Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Line, Tumor; Cysteine; Gene Expression Regulation, Neoplastic; Gene Knockdown Techniques; Glutathione; Glycine; HEK293 Cells; HeLa Cells; Humans; Leupeptins; NF-E2-Related Factor 2; Oligopeptides; Proteasome Endopeptidase Complex; Pyrazines; RNA, Small Interfering; Sulfasalazine; Urinary Bladder Neoplasms | 2014 |
Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells.
Topics: Antineoplastic Agents; Apoptosis; Bortezomib; Cell Line, Tumor; Cell Survival; Cluster Analysis; Cysteine; Dose-Response Relationship, Drug; Gene Expression Profiling; Glutathione; Humans; Intracellular Space; Multiple Myeloma; NF-E2-Related Factor 2; Proteasome Endopeptidase Complex; Stress, Physiological | 2016 |