cyhalothrin and azadirachtin

cyhalothrin has been researched along with azadirachtin* in 4 studies

Other Studies

4 other study(ies) available for cyhalothrin and azadirachtin

ArticleYear
Acute toxicity of organophosphate pesticide profenofos, pyrethroid pesticide λ cyhalothrin and biopesticide azadirachtin and their sublethal effects on growth and oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex.
    Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 2021, Volume: 242

    The present study was aimed to assess the acute toxicity of organophosphate pesticide, profenofos; synthetic pyrethroid pesticide, λ cyhalothrin and biopesticide, azadirachtin and their sublethal effects on growth rate and oxidative stress biomarkers in Tubifex tubifex in vivo. The results showed that 96 h LC

    Topics: Animals; Behavior, Animal; Biomarkers; Insecticides; Limonins; Nitriles; Oligochaeta; Organothiophosphates; Oxidative Stress; Pyrethrins

2021
Lethal and Sublethal Toxicity of Insecticides to the Lacewing Ceraeochrysa Cubana.
    Neotropical entomology, 2019, Volume: 48, Issue:1

    The lethal and sublethal effects of 11 insecticides on the predator Ceraeochrysa cubana (Hagen) were assessed under laboratory conditions. First-instar larvae and adults ≤ 48 h old were sprayed with the highest insecticides doses allowed to control Diaphorina citri Kuwayama in the citrus crop. The survival and duration rates of the different development stages, sex ratio, pre-oviposition period, fecundity, and fertility of the insects were evaluated. In the larval bioassay, chlorpyrifos and malathion had lethal effect which none larvae survived. Azadirachtin, lambda-cyhalothrin + chlorantraniliprole, lambda-cyhalothrin + thiamethoxam, and thiamethoxam had lethal and sublethal effects that did not allow to estimate the life table parameters because the low number of couples formed. Esfenvalerate, imidacloprid WG and SC, phosmet, and pyriproxyfen had sublethal effects which were reflected in the net reproductive rate and in the intrinsic rate of natural increase. In bioassay using adults, none of the individuals survived in the chlorpyrifos, lambda-cyhalothrin + chlorantraniliprole, lambda-cyhalothrin + thiamethoxam, malathion, or thiamethoxam treatments, and the azadirachtin, esfenvalerate, imidacloprid WG and SC, phosmet, and pyriproxyfen treatments were significantly lower compared to the control. None of the insecticides was harmless to first-instar larvae and adults of C. cubana under laboratory conditions showing their potential to reduce the efficiency of this predator.

    Topics: Animals; Chlorpyrifos; Hemiptera; Insecticides; Larva; Limonins; Malathion; Neonicotinoids; Nitriles; Nitro Compounds; Pyrethrins; Pyridines; Random Allocation; Thiamethoxam; Toxicity Tests

2019
Lethal and Sublethal Effects of Insecticides on the Egg Parasitoid Telenomus podisi (Hymenoptera: Platygastridae).
    Journal of economic entomology, 2016, Volume: 109, Issue:1

    Insecticide use remains controversial, and subjected to increasing environmental and health concerns, even when recent insecticide groups are considered. Neonicotinoids and even bioinsecticides are in the forefront of discussions regarding their nontarget safety. The ubiquitous focus on the lethal effects of insecticides on nontarget species has been expanding to sublethal effects, as sublethal exposure extends for a longer time and affects a broader range of (nontarget) species. Here we explored the lethal and sublethal effects of a lambda-cyhalothrin + thiamethoxan mixture, the neonicotinoid imidacloprid, and the bioinsecticide azadirachtin on the egg parasitoid Telenomus podisi Ashmead, an important parasitoid of stink bug Euschistus heros (F.), a key soybean pest in neotropical America. Contact with dry insecticide residue on glass surface and (parasitized and healthy) host egg immersion exposure bioassays were performed, assessing their acute lethal effects, and their potential sublethal impairment of parasitism, adult emergence, and fertility of the egg parasitoid. Both imidacloprid and the insecticide mixture exhibited high acute lethal activity toward the parasitoid under contact with dry insecticide residue. These insecticides compromised parasitism and wasp emergence when exposure took place before parasitism. In contrast, azadirachtin did not affect adult survival. However, this bioinsecticide compromised parasitism and progeny production, impairing the female parasitoid reproductive potential. Our results indicate strong negative effects of imidacloprid, and specially of the mixture lambda-cyhalthrin + thiamethoxan. However, even azadirachtin, which exhibited low acute lethality, exhibited significant negative sublethal effects on parasitism and population growth of egg parasitoid, cautioning against their use and the need of semifield and field assessments to confirm such an impact.

    Topics: Animals; Female; Heteroptera; Host-Parasite Interactions; Imidazoles; Insecticides; Limonins; Neonicotinoids; Nitriles; Nitro Compounds; Oxazines; Pyrethrins; Thiamethoxam; Thiazoles; Wasps

2016
The Efficacy of Bacillus thuringiensis spp. galleriae Against Rice Water Weevil (Coleoptera: Curculionidae) for Integrated Pest Management in California Rice.
    Journal of economic entomology, 2015, Volume: 108, Issue:1

    Rice water weevil (Lissorhoptrus oryzophilus Kushel) is the most damaging insect pest of rice in the United States. Larval feeding on the roots stunt growth and reduce yield. Current pest management against the weevil in California relies heavily on pyrethroids that can be damaging to aquatic food webs. Examination of an environmentally friendly alternative biopesticide based on Bacillus thuringiensis spp. galleriae chemistry against rice water weevil larvae showed moderate levels of activity in pilot studies. We further examined the performance of different formulations of Bt.galleriae against the leading insecticide used in California rice, λ-cyhalothrin. The granular formulation performed as well as the λ-cyhalothrin in use in California in some of our greenhouse and field studies. This is the first reported use of B. thuringiensis spp. galleriae against rice water weevil.

    Topics: Animals; Bacillus thuringiensis; California; Insect Control; Limonins; Nitriles; Oryza; Pyrethrins; Weevils

2015