cyclopropavir and methylenecyclopropane

cyclopropavir has been researched along with methylenecyclopropane* in 4 studies

Reviews

1 review(s) available for cyclopropavir and methylenecyclopropane

ArticleYear
The search for new therapies for human cytomegalovirus infections.
    Virus research, 2011, Volume: 157, Issue:2

    Ganciclovir (GCV), the therapy of choice for human cytomegalovirus (CMV) infections and foscarnet, a drug used to treat GCV-resistant CMV infections was approved more than twenty years ago. Although cidofovir and a prodrug of GCV have since been added to the armamentarium, a highly effective drug without significant toxicities has yet to be approved. Such a therapeutic agent is required for treatment of immunocompromised hosts and infants, which bear the greatest burden of disease. The modest antiviral activity of existing drugs is insufficient to completely suppress viral replication, which results in the selection of drug-resistant variants that remain pathogenic, continue to replicate, and contribute to disease. Sustained efforts, largely in the biotech industry and academia, have identified highly active lead compounds that have progressed into clinical studies with varying levels of success. A few of these compounds inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapies. Some of the more promising drugs will be discussed with an emphasis on those progressing to clinical studies. Their antiviral activity both in vitro and in vivo, spectrum of antiviral activity, and mechanism of action will be reviewed to provide an update on the progress of potential new therapies for CMV infections.

    Topics: Antiviral Agents; Cidofovir; Cyclopropanes; Cytomegalovirus; Cytomegalovirus Infections; Cytosine; Foscarnet; Ganciclovir; Guanine; Humans; Organophosphonates; Valganciclovir; Virus Replication

2011

Other Studies

3 other study(ies) available for cyclopropavir and methylenecyclopropane

ArticleYear
Synthesis and antiviral activity of certain second generation methylenecyclopropane nucleosides.
    Bioorganic & medicinal chemistry, 2012, Jun-15, Volume: 20, Issue:12

    A second-generation series of substituted methylenecyclopropane nucleosides (MCPNs) has been synthesized and evaluated for antiviral activity against a panel of human herpesviruses, and for cytotoxicity. Although alkylated 2,6-diaminopurine analogs showed little antiviral activity, the compounds containing ether and thioether substituents at the 6-position of the purine did demonstrate potent and selective antiviral activity against several different human herpesviruses. In the 6-alkoxy series, antiviral activity depended on the length of the ether carbon chain, with the optimum chain length being about four carbon units long. For the corresponding thioethers, compounds containing secondary thioethers were more potent than those with primary thioethers.

    Topics: Antiviral Agents; Cell Line; Cyclopropanes; Dose-Response Relationship, Drug; Fibroblasts; Herpesviridae; Humans; Microbial Sensitivity Tests; Molecular Conformation; Nucleosides; Structure-Activity Relationship

2012
(Z)- and (E)-2-(1,2-dihydroxyethyl)methylenecyclopropane analogues of 2'-deoxyadenosine and 2'-deoxyguanosine. Synthesis of all stereoisomers, absolute configuration, and antiviral activity.
    Journal of medicinal chemistry, 2009, May-28, Volume: 52, Issue:10

    Chiral Z- and E-stereoisomers of (1,2-dihydroxyethyl)methylenecyclopropane analogues of 2'-deoxyadenosine and 2'-deoxyguanosine were synthesized, and their antiviral activity was investigated. (S)-Methylenecyclopropylcarbinol (16) was converted in seven steps to reagents 26 and 27, which were used for alkylation-elimination of adenine and 2-amino-6-chloropurine to get ultimately analogues 12a, 12b, 13a, 13b, 14a, 14b, 15a, and 15b. The enantiomeric series ent-12a, ent-12b, ent-13a, ent-13b, ent-14a, ent-14b, ent-15a, and ent-15b was obtained by similar procedures starting from (R)-methylenecyclopropylcarbinol (ent-16). The Z-isomer ent-12b was an inhibitor of two strains of human cytomegalovirus (HCMV) with EC(50) of 6.8 and 7.5 microM and of murine cytomegalovirus (MCMV) with EC(50) of 11.3 microM. It was less active against HCMV with mutated gene UL97. It inhibited Epstein-Barr virus (EBV) with EC(50) of 8 microM. The E-isomers ent-15a, ent-13a, and 15b were less effective. All adenine analogues with the exception of the Z-isomers ent-12a and ent-14a were moderate substrates for adenosine deaminase.

    Topics: Animals; Antiviral Agents; Cyclopropanes; Cytomegalovirus; Deoxyadenosines; Deoxyguanosine; Herpesvirus 4, Human; Humans; Mice; Muromegalovirus; Stereoisomerism; Structure-Activity Relationship

2009
Fluorinated methylenecyclopropane analogues of nucleosides. Synthesis and antiviral activity of (Z)- and (E)-9-{[(2-fluoromethyl-2-hydroxymethyl)-cyclopropylidene]methyl}adenine and -guanine.
    Bioorganic & medicinal chemistry, 2008, Mar-01, Volume: 16, Issue:5

    Synthesis and antiviral activity of the title fluoromethylenecyclopropane analogues 15a, 15b, 16a, and 16b is described. Methylenecyclopropane carboxylate was first transformed to 2,2-bis-hydroxymethylmethylenecyclopropane. Selective monoacetylation followed by introduction of fluorine gave 2-acetoxymethyl-2-fluoromethylmethylenecyclopropane as the key intermediate. The synthesis of analogues 15a, 15b, 16a, and 16b then followed alkylation-elimination procedure as described previously for other methylenecyclopropane analogues [corrected] Compounds 15a, 15b, 16a and 16b were not active against Epstein-Barr virus (EBV) [corrected] Analogue 15a inhibited hepatitis C virus by virtue of its cytotoxicity and it moderately inhibited replication of the Towne strain of human cytomegalovirus (HCMV). The E-isomer 16a was a substrate for adenosine deaminase, whereas the Z-isomer 15a was not deaminated.

    Topics: Adenine; Antiviral Agents; Cell Line; Cyclopropanes; Fluorine Compounds; Guanine; Hepacivirus; Hydroxylation; Isomerism; Magnetic Resonance Spectroscopy; Methylation; Molecular Structure; Nucleosides

2008