cyclopentane has been researched along with rosiglitazone in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bond, R; Cook, J; Gilkeson, G; Guyton, K; Halushka, P; Reilly, C | 1 |
Brossart, P; Denzlinger, C; Grünebach, F; Lauber, K; Nencioni, A; Van Parijs, L; Wesselborg, S | 1 |
Blay, J; Lowthers, EL; Richard, CL | 1 |
Jang, SK; Kim, JH; Kim, WJ | 1 |
4 other study(ies) available for cyclopentane and rosiglitazone
Article | Year |
---|---|
Differential effects of 15-deoxy-delta(12,14)-prostaglandin J2 and a peroxisome proliferator-activated receptor gamma agonist on macrophage activation.
Topics: Animals; Cyclopentanes; DNA-Binding Proteins; Enzyme Activation; Epoprostenol; I-kappa B Proteins; Lipopolysaccharides; Macrophage Activation; Macrophages, Peritoneal; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; NF-KappaB Inhibitor alpha; Nitric Oxide; Phosphorylation; Prostaglandin D2; Protein Processing, Post-Translational; Rats; Receptors, Cytoplasmic and Nuclear; Rosiglitazone; Tetradecanoylphorbol Acetate; Thiazoles; Thiazolidinediones; Thromboxane B2; Transcription Factors; Tumor Necrosis Factor-alpha | 2001 |
Cyclopentenone prostaglandins induce lymphocyte apoptosis by activating the mitochondrial apoptosis pathway independent of external death receptor signaling.
Topics: Apoptosis; Cyclopentanes; Down-Regulation; Growth Inhibitors; Humans; Intracellular Membranes; Jurkat Cells; Lymphocyte Activation; Membrane Potentials; Mitochondria; Oxidative Stress; Permeability; Prostaglandin D2; Receptors, Cytoplasmic and Nuclear; Receptors, Tumor Necrosis Factor; Rosiglitazone; Signal Transduction; T-Lymphocyte Subsets; Thiazolidinediones; Transcription Factors | 2003 |
15-Deoxy-delta(12,14)-prostaglandin J(2) down-regulates CXCR4 on carcinoma cells through PPARgamma- and NFkappaB-mediated pathways.
Topics: Animals; Carcinoma; Cell Line, Tumor; Cyclopentanes; Down-Regulation; Gene Expression Regulation, Neoplastic; HT29 Cells; Humans; Mice; NF-kappa B; PPAR gamma; Prostaglandin D2; Receptors, CXCR4; Rosiglitazone; Thiazolidinediones; Time Factors | 2007 |
Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A.
Topics: Anti-Inflammatory Agents; Arachidonic Acid; Arsenites; Chromans; Cyclopentanes; Cytoplasmic Granules; Dinoprostone; Emetine; Enzyme Inhibitors; Eukaryotic Initiation Factor-2; Eukaryotic Initiation Factor-4A; Gene Expression Regulation; HeLa Cells; Humans; Hypoglycemic Agents; Inflammation; Poly(A)-Binding Proteins; PPAR gamma; Prostaglandin D2; Prostaglandins A; Protein Biosynthesis; Protein Synthesis Inhibitors; Rosiglitazone; Signal Transduction; Sodium Compounds; T-Cell Intracellular Antigen-1; Thiazolidinediones; TNF Receptor-Associated Factor 2; Troglitazone; Tumor Necrosis Factor-alpha | 2007 |