cyclopentane has been researched along with camalexin in 40 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (2.50) | 18.2507 |
2000's | 18 (45.00) | 29.6817 |
2010's | 19 (47.50) | 24.3611 |
2020's | 2 (5.00) | 2.80 |
Authors | Studies |
---|---|
Broekaert, WF; Eggermont, K; Nelissen, I; Thomma, BP | 1 |
Feys, BJ; Parker, JE | 1 |
Ausubel, FM; Cui, J; Devoto, A; Dewdney, J; Drummond, EP; Reuber, TL; Stutius, LM; Wildermuth, MC | 1 |
Belbahri, L; Mauch, F; Mauch-Mani, B; Roetschi, A; Si-Ammour, A | 1 |
Govrin, EM; Levine, A | 1 |
Bari, RP; Broekaert, WF; Brouwer, M; Cammue, BP; Eggermont, K; Garmier, M; Penninckx, IA; Thomma, BP; Tierens, KF | 1 |
Ausubel, FM; De Lorenzo, G; Ferrari, S; Plotnikova, JM | 1 |
Bohman, S; Dixelius, C; Staal, J; Thomma, BP; Wang, M | 1 |
Mauch-Mani, B; Ton, J | 1 |
Enju, A; Hirayama, T; Ishida, J; Kobayashi, M; Kubo, Y; Nakashima, M; Narusaka, M; Narusaka, Y; Park, P; Sakurai, T; Satou, M; Seki, M; Shinozaki, K; Shiraishi, T | 1 |
Brader, G; Kariola, T; Li, J; Palva, ET | 1 |
Mishina, TE; Zeier, J | 2 |
Berger, S; Mueller, MJ; Raacke, IC; von Rad, U | 1 |
DellaPenna, D; Farmer, EE; Krischke, M; Mène-Saffrané, L; Mueller, MJ; Sattler, SE | 1 |
Chehab, EW; Dehesh, K; Kaspi, R; Kliebenstein, D; Negre-Zakharov, F; Rowe, H; Savchenko, T | 1 |
Bones, AM; Jørstad, TS; Kuśnierczyk, A; Rossiter, JT; Troczyńska, J; Winge, P | 1 |
Fedorowski, J; Gamelin, E; Greenberg, JT; LaCourse, W; Lu, H; Salimian, S; Wang, G | 1 |
Dixelius, C; Oide, S; Persson, M; Staal, J | 1 |
Ausubel, FM; Clay, NK; Danna, CH; Millet, YA; Simon, MD; Songnuan, W; Werck-Reichhart, D | 1 |
Chan, EK; Corwin, J; Dehesh, K; Kliebenstein, DJ; Rowe, HC; Walley, JW | 1 |
Alioua, A; Berr, A; Heintz, D; Heitz, T; McCallum, EJ; Shen, WH | 1 |
Logemann, E; Pandey, SP; Roccaro, M; Schön, M; Somssich, IE | 1 |
Aitken, EA; Dombrecht, B; Gardiner, DM; Kadoo, NY; Kazan, K; Kidd, BN; Manners, JM; Schenk, PM; Tekeoglu, M; Thatcher, LF | 1 |
Braam, J; Chehab, EW; Dehesh, K; Kim, S; Kliebenstein, D; Savchenko, T | 1 |
Beltrán-Peña, E; Contreras-Cornejo, HA; Herrera-Estrella, A; López-Bucio, J; Macías-Rodríguez, L | 1 |
Bouarab, K; Brisson, N; El Oirdi, M; González-Lamothe, R | 1 |
Birkenbihl, RP; Diezel, C; Somssich, IE | 1 |
Ambard-Bretteville, F; Barchietto, T; Didierlaurent, L; Garmier, M; Le Rudulier, T; Massoud, K; Pallandre, L; Saindrenan, P; Seng, JM | 1 |
Ballaré, CL; Demkura, PV | 1 |
Bouwmeester, K; Govers, F; Shan, W; van de Mortel, JE; Wang, Y | 1 |
Drurey, C; Hogenhout, SA; Kettles, GJ; Maule, AJ; Schoonbeek, HJ | 1 |
Diezel, C; Roth, C; Schön, M; Somssich, IE; Töller, A; Westphal, L; Wiermer, M | 1 |
Ballaré, CL; Cargnel, MD; Demkura, PV | 1 |
Dicke, M; Gershenzon, J; Kapsomenou, E; Pangesti, N; Pineda, A; Reichelt, M; van de Mortel, JE; van Loon, JJ | 1 |
Bassin, B; Choi, H; Huh, SU; Khare, D; Kim, J; Lee, Y; Martinoia, E; Paek, KH; Sohn, KH | 1 |
Birkenbihl, RP; Liu, S; Somssich, IE; Zeier, J; Ziegler, J | 1 |
Atwell, S; Chen, F; Copeland, D; Corwin, JA; Eshbaugh, R; Feusier, J; Kliebenstein, DJ; Zhang, W | 1 |
Bulgakov, VP; Grigorchuk, VP; Makhazen, DS; Shkryl, YN; Tchernoded, GK; Veremeichik, GN | 1 |
Cox, KL | 1 |
1 review(s) available for cyclopentane and camalexin
Article | Year |
---|---|
Interplay of signaling pathways in plant disease resistance.
Topics: Acetates; Arabidopsis; Cyclopentanes; Ethylenes; Genes, Plant; Immunity, Innate; Indoles; Oxylipins; Plant Diseases; Plant Physiological Phenomena; Plant Proteins; Plants; Protein Structure, Tertiary; Salicylic Acid; Signal Transduction; Thiazoles | 2000 |
39 other study(ies) available for cyclopentane and camalexin
Article | Year |
---|---|
Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola.
Topics: Alternaria; Anti-Infective Agents; Antifungal Agents; Arabidopsis; Botrytis; Cyclopentanes; Defensins; Disease Susceptibility; Ethylenes; Gene Expression Regulation, Plant; Indoles; Mutation; Oxylipins; Phytoalexins; Plant Diseases; Plant Extracts; Plant Growth Regulators; Plant Proteins; Salicylic Acid; Sesquiterpenes; Terpenes; Thiazoles | 1999 |
Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen.
Topics: Alleles; Arabidopsis; Ascomycota; Chromosome Mapping; Chromosome Segregation; Cyclopentanes; Ethylenes; Genes, Plant; Genetic Complementation Test; Genetic Predisposition to Disease; Glucans; Indoles; Mutation; Oxylipins; Phenotype; Plant Diseases; Plant Leaves; Salicylic Acid; Signal Transduction; Thiazoles | 2000 |
Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling.
Topics: Arabidopsis; Cyclopentanes; Ethylenes; Genes, Plant; Indoles; Mutation; Oxylipins; Phytophthora; Salicylic Acid; Signal Transduction; Thiazoles | 2001 |
Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR).
Topics: Arabidopsis; Botrytis; Cyclopentanes; Gene Expression Regulation, Plant; Indoles; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Pseudomonas aeruginosa; Salicylic Acid; Thiazoles | 2002 |
Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds.
Topics: Alternaria; Arabidopsis; Cyclopentanes; Defensins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Mutation; Nitrobenzoates; Oxylipins; Paraquat; Phytoalexins; Plant Diseases; Plant Extracts; Plant Proteins; Reactive Oxygen Species; Salicylates; Sesquiterpenes; Terpenes; Thiazoles | 2002 |
Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.
Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Carboxylic Ester Hydrolases; Cyclopentanes; Cytochrome P-450 Enzyme System; Defensins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Intramolecular Transferases; Membrane Transport Proteins; Mixed Function Oxygenases; Mutation; Nucleotidyltransferases; Oxylipins; Phenylalanine Ammonia-Lyase; Plant Diseases; Plant Proteins; Receptors, Cell Surface; Salicylic Acid; Signal Transduction; Thiazoles | 2003 |
Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling.
Topics: Arabidopsis; Ascomycota; Copper Sulfate; Cyclopentanes; Ethylenes; Immunity, Innate; Indoles; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Silver Nitrate; Thiazoles | 2004 |
Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose.
Topics: Abscisic Acid; Alternaria; Aminobutyrates; Arabidopsis; Cyclopentanes; Genes, Plant; Glucans; Indoles; Mutation; Oxylipins; Phyllachorales; Plant Diseases; Plants, Genetically Modified; Salicylic Acid; Signal Transduction; Thiadiazoles; Thiazoles | 2004 |
RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum.
Topics: Arabidopsis; Arabidopsis Proteins; Colletotrichum; Cyclopentanes; Ethylenes; Immunity, Innate; Indoles; Microscopy, Electron; Oligonucleotide Array Sequence Analysis; Oxylipins; Phylogeny; Plant Diseases; Plant Growth Regulators; Plant Leaves; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Thiazoles | 2004 |
WRKY70 modulates the selection of signaling pathways in plant defense.
Topics: Alternaria; Anthocyanins; Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; Gene Expression Regulation, Plant; Glucosinolates; Immunity, Innate; Indoles; Mutation; Oxylipins; Phenotype; Plant Leaves; Plant Roots; Plants, Genetically Modified; Salicylic Acid; Signal Transduction; Thiazoles; Transcription Factors | 2006 |
The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance.
Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Mutation; Oxygenases; Oxylipins; Plant Leaves; Pseudomonas syringae; Salicylic Acid; Signal Transduction; Thiazoles | 2006 |
Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms.
Topics: Arabidopsis; Botrytis; Cyclopentanes; Immunity, Innate; Indoles; Oxylipins; Plant Leaves; Pseudomonas syringae; Saccharomyces cerevisiae; Salicylic Acid; Signal Transduction; Thiazoles | 2006 |
Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants.
Topics: Arabidopsis; Arabidopsis Proteins; Biomarkers; Cyclopentanes; Fatty Acids, Unsaturated; Gene Expression Profiling; Gene Expression Regulation, Plant; Germination; Immunity, Innate; Indoles; Lipid Peroxidation; Malondialdehyde; Mutation; Oxylipins; Plant Diseases; RNA, Messenger; Seedlings; Thiazoles; Tocopherols; Up-Regulation | 2006 |
Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains.
Topics: Arabidopsis; Arabidopsis Proteins; Blotting, Northern; Carrier Proteins; Cyclopentanes; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Indoles; Lignin; Oxylipins; Phenylalanine Ammonia-Lyase; Plant Leaves; Plants, Genetically Modified; Pseudomonas syringae; Salicylic Acid; Thiazoles | 2007 |
Distinct roles of jasmonates and aldehydes in plant-defense responses.
Topics: Aldehyde-Lyases; Aldehydes; Animals; Aphids; Arabidopsis; Cyclopentanes; Cytochrome P-450 Enzyme System; Gene Expression Regulation, Plant; Genotype; Indoles; Intramolecular Oxidoreductases; Models, Biological; Oxylipins; Plant Diseases; Plants; Signal Transduction; Species Specificity; Thiazoles | 2008 |
Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack.
Topics: Animals; Aphids; Arabidopsis; Arabidopsis Proteins; Brassica; Calcium Signaling; Cell Wall; Cyclopentanes; Ethylenes; Fertility; Gene Expression Regulation, Plant; Genes, Plant; Glucosinolates; Hydrogen Peroxide; Indoles; Models, Biological; Oxidative Stress; Oxylipins; Plant Leaves; Salicylic Acid; Thiazoles; Time Factors; Transcription Factors; Transcription, Genetic | 2008 |
Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis.
Topics: Ankyrins; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Genes, Plant; Immunity, Innate; Indoles; Intramolecular Transferases; Mutagenesis, Insertional; Mutation; Oxylipins; Salicylic Acid; Signal Transduction; Thiazoles | 2009 |
Layers of defense responses to Leptosphaeria maculans below the RLM1- and camalexin-dependent resistances.
Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Cytochrome P-450 Enzyme System; Ethylenes; Fungi; Gene Expression Regulation, Plant; Genes, Plant; Host-Pathogen Interactions; Indoles; Lignin; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Thiazoles; Virulence Factors | 2009 |
Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.
Topics: Arabidopsis; Arabidopsis Proteins; Chitin; Cyclopentanes; Cytochrome P-450 Enzyme System; Ethylenes; Flagella; Glucans; Host-Pathogen Interactions; Indoles; N-Glycosyl Hydrolases; Oxylipins; Peptidoglycan; Plant Roots; Plants, Genetically Modified; Pseudomonas; RNA, Plant; Salicylic Acid; Signal Transduction; Thiazoles | 2010 |
Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis.
Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Gene Expression; Gene Expression Profiling; Gene Expression Regulation, Plant; Host-Parasite Interactions; Indoles; Mycoses; Oxylipins; Phenotype; Plant Diseases; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Thiazoles | 2010 |
Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.
Topics: Alternaria; Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Histone Methyltransferases; Histone-Lysine N-Methyltransferase; Histones; Indoles; Methylation; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Promoter Regions, Genetic; RNA, Plant; Thiazoles | 2010 |
Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.
Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; DNA-Binding Proteins; Gene Expression Profiling; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Indoles; Mutation; Oxylipins; Plant Diseases; Promoter Regions, Genetic; Signal Transduction; Thiazoles; Transcription Factors | 2010 |
Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis.
Topics: Arabidopsis; Arabidopsis Proteins; Biological Transport; Cyclopentanes; Fusarium; Gene Expression Regulation, Plant; Indoleacetic Acids; Indoles; Mutation; Oxylipins; Plant Diseases; Plant Roots; Salicylic Acid; Signal Transduction; Thiazoles | 2011 |
Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant.
Topics: Animals; Arabidopsis; Arabidopsis Proteins; Botrytis; Brassica; Cyclopentanes; DNA, Bacterial; Fatty Acids, Unsaturated; Fertility; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Introns; Molecular Sequence Data; Moths; Mutagenesis, Insertional; Mutation; Oxidoreductases; Oxylipins; Plant Diseases; Thiazoles | 2011 |
Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea.
Topics: Arabidopsis; Biomass; Botrytis; Cyclopentanes; Disease Resistance; Gas Chromatography-Mass Spectrometry; Gene Expression Regulation, Plant; Hydrogen Peroxide; Indoles; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Roots; Salicylic Acid; Seedlings; Thiazoles; Trichoderma | 2011 |
The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development.
Topics: Arabidopsis; Arabidopsis Proteins; Aspartic Acid; Botrytis; Cyclopentanes; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Indoleacetic Acids; Indoles; Oxylipins; Plant Diseases; Plant Growth Regulators; Pseudomonas syringae; Salicylic Acid; Signal Transduction; Thiazoles; Virulence | 2012 |
Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection.
Topics: Agrobacterium tumefaciens; Arabidopsis; Arabidopsis Proteins; Botrytis; Cloning, Molecular; Cyclopentanes; Disease Resistance; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Indoles; Oxidation-Reduction; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Promoter Regions, Genetic; Salicylic Acid; Signal Transduction; Thiazoles; Transcription Factors; Transcription, Genetic; Transformation, Genetic | 2012 |
Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis.
Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; DNA-Binding Proteins; Dose-Response Relationship, Drug; Ethylenes; Gene Expression Regulation, Plant; Indoles; Mitogen-Activated Protein Kinases; Oomycetes; Oxylipins; Phosphites; Phosphorylation; Plant Diseases; Plant Immunity; Salicylic Acid; Scopoletin; Signal Transduction; Thiazoles | 2012 |
UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation.
Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Chromosomal Proteins, Non-Histone; Coumaric Acids; Cyclopentanes; Disease Resistance; Gene Expression Regulation, Plant; Glucosinolates; Indoles; Mutation; Oxylipins; Phenols; Plant Diseases; Signal Transduction; Thiazoles; Ultraviolet Rays | 2012 |
A novel Arabidopsis-oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence.
Topics: Arabidopsis; Cyclopentanes; Ethylenes; Glucosinolates; Host-Pathogen Interactions; Indoles; Oxylipins; Phenotype; Phytophthora; Plant Diseases; Salicylic Acid; Thiazoles | 2013 |
Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs.
Topics: Animals; Aphids; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; Ethylenes; Feeding Behavior; Fertility; Gene Expression Regulation, Plant; Indoles; MicroRNAs; Mutation; Oxylipins; Phloem; Plant Diseases; Prunus; Reproduction; Signal Transduction; Survival Analysis; Thiazoles; Up-Regulation | 2013 |
Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4.
Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Botrytis; Cyclopentanes; Disease Resistance; DNA-Binding Proteins; Gene Expression Regulation, Plant; Glucosinolates; Indoles; Mutation; Oomycetes; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plants, Genetically Modified; Pseudomonas syringae; Salicylic Acid; Signal Transduction; Thiazoles; Transcription Factors | 2013 |
Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin.
Topics: Arabidopsis; Arabidopsis Proteins; Biosynthetic Pathways; Botrytis; Cyclopentanes; Disease Susceptibility; Gene Expression Regulation, Plant; Glucosinolates; Indoleacetic Acids; Indoles; Mutation; Nuclear Proteins; Oxylipins; Phytochrome; Plant Diseases; Plant Immunity; Plant Leaves; Signal Transduction; Thiazoles | 2014 |
Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore.
Topics: Animals; Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Glucosinolates; Herbivory; Indoles; Lepidoptera; Oxylipins; Plant Growth Regulators; Plant Roots; Pseudomonas; Rhizobium; Signal Transduction; Symbiosis; Thiazoles; Transcription Factors | 2016 |
Topics: Acetates; Alternaria; Arabidopsis; Arabidopsis Proteins; ATP Binding Cassette Transporter, Subfamily G; Biological Transport; Botrytis; Cyclopentanes; Diterpenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Green Fluorescent Proteins; Indoles; Mutation; Oxylipins; Phenotype; Phylogeny; Plant Diseases; Plant Leaves; Signal Transduction; Thiazoles | 2017 |
Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity.
Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; DNA, Plant; Ecotype; Gene Expression Regulation, Plant; Genes, Plant; Genotype; Indoles; Mutation; Oxylipins; Phenotype; Plant Diseases; Plant Growth Regulators; Plant Immunity; Protein Binding; RNA, Messenger; Thiazoles; Transcription Factors | 2017 |
Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/
Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Disease Resistance; Gene Expression Regulation, Plant; Gene Regulatory Networks; Genotype; Host-Pathogen Interactions; Indoles; Mutation; Oxylipins; Plant Diseases; Salicylic Acid; Signal Transduction; Thiazoles; Transcriptome | 2017 |
Inhibition of the JAZ1 gene causes activation of camalexin biosynthesis in Arabidopsis callus cultures.
Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Gene Expression Regulation, Plant; Indoles; Oxylipins; Repressor Proteins; Secondary Metabolism; Thiazoles | 2021 |
Stronger together: Ethylene, jasmonic acid, and MAPK signaling pathways synergistically induce camalexin synthesis for plant disease resistance.
Topics: Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Indoles; Oxylipins; Plant Diseases; Signal Transduction; Thiazoles | 2022 |