cyclopentane has been researched along with 3-hexenylacetate in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (57.14) | 29.6817 |
2010's | 3 (42.86) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Arimura, G; Horiuchi, J; Nishioka, T; Ozawa, R; Shimoda, T; Takabayashi, J | 1 |
Engelberth, J; Schultz, JC; Seidl-Adams, I; Tumlinson, JH | 1 |
Arimura, G; Boland, W; Brand, P; Dabrowska, P; David, A; Köpke, S; Kunert, M; Maffei, ME; Volpe, V | 1 |
Carlson, JE; Davis, JM; De Moraes, CM; Dervinis, C; Frost, CJ; Mescher, MC | 1 |
Birkett, MA; Bleicher, E; Bruce, TJ; Caulfield, JC; da Costa, JG; Dewhirst, SY; Hegde, M; Loza-Reyes, E; Mayon, P; Oliveira, JN; Pickett, JA; Santana, AE | 1 |
Anastasio, C; Kirk, BB; Pham, AT; Richards-Henderson, NK | 1 |
Ameye, M; Audenaert, K; De Vleesschauwer, D; De Zutter, N; Haesaert, G; Smagghe, G; Steppe, K; Van Meulebroek, L; Vanhaecke, L | 1 |
7 other study(ies) available for cyclopentane and 3-hexenylacetate
Article | Year |
---|---|
Exogenous ACC enhances volatiles production mediated by jasmonic acid in lima bean leaves.
Topics: Acari; Acetates; Acyclic Monoterpenes; Alkenes; Amino Acids, Cyclic; Animals; Cyclopentanes; Mite Infestations; Oxylipins; Phaseolus; Plant Leaves; Volatilization | 2001 |
Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays.
Topics: Acetates; Animals; Cyclopentanes; Fatty Acids, Unsaturated; Gene Expression Regulation, Plant; Genes, Plant; Insecta; Oxidoreductases; Oxylipins; Plant Extracts; Plant Leaves; RNA, Messenger; Signal Transduction; Time Factors; Up-Regulation; Volatilization; Zea mays | 2007 |
Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission.
Topics: Acetates; Acyclic Monoterpenes; Alkenes; Animals; Carbon Isotopes; Circadian Rhythm; Cyclopentanes; Erythritol; Gene Expression Regulation, Plant; Host-Parasite Interactions; Larva; Light; Molecular Sequence Data; Oxylipins; Phaseolus; Plant Leaves; Plant Proteins; Signal Transduction; Spodoptera; Sugar Phosphates; Up-Regulation; Volatilization | 2008 |
Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate.
Topics: Acetates; alpha-Linolenic Acid; Animals; Cyclopentanes; Enzyme Inhibitors; Gene Expression; Moths; Oils, Volatile; Oligonucleotide Array Sequence Analysis; Oxylipins; Peptide Hydrolases; Plant Diseases; Plant Growth Regulators; Plant Leaves; Populus; Terpenes | 2008 |
Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-jasmone.
Topics: Acetates; Alkenes; Animals; Aphids; Cyclopentanes; Gossypium; Herbivory; Molecular Structure; Oxylipins; Salicylates; Stereoisomerism; Terpenes; Volatile Organic Compounds | 2012 |
Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen.
Topics: Acetates; Aerosols; Cyclopentanes; Hexanols; Hydroxyl Radical; Kinetics; Oxygen; Oxylipins; Pentanols; Plant Leaves; Salicylates; Singlet Oxygen; Temperature; Volatile Organic Compounds; Volatilization; Water | 2015 |
Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production.
Topics: Acetates; Cyclopentanes; Fusarium; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Proteins; Salicylic Acid; Seedlings; Trichothecenes; Triticum | 2015 |