Page last updated: 2024-08-17

cycloheximide and streptonigrin

cycloheximide has been researched along with streptonigrin in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19901 (33.33)18.7374
1990's0 (0.00)18.2507
2000's1 (33.33)29.6817
2010's1 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Davies, J; Schindler, D1

Reviews

1 review(s) available for cycloheximide and streptonigrin

ArticleYear
Inhibitors of macromolecular synthesis in yeast.
    Methods in cell biology, 1975, Volume: 12

    Topics: Acriflavine; Amphotericin B; Anisomycin; Anti-Bacterial Agents; Antineoplastic Agents; Cycloheximide; Dactinomycin; Daunorubicin; Deoxyadenosines; Depression, Chemical; DNA; Ethidium; Fluorouracil; Fungal Proteins; Hydroxyurea; Mitomycins; Nalidixic Acid; Phenazines; Phenylethyl Alcohol; Porfiromycin; Puromycin; RNA; Saccharomyces cerevisiae; Streptonigrin; Sulfanilamides; Triaziquone; Trichothecenes; Uracil

1975

Other Studies

2 other study(ies) available for cycloheximide and streptonigrin

ArticleYear
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012