cyclohexanol has been researched along with noladin ether in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Joseph, BK; Mayeux, PR; Prather, PL; Ruckle, MB; Shoemaker, JL | 1 |
Mayeux, PR; Prather, PL; Ruckle, MB; Shoemaker, JL | 1 |
Hayase, T; Yamamoto, K; Yamamoto, Y | 1 |
3 other study(ies) available for cyclohexanol and noladin ether
Article | Year |
---|---|
The endocannabinoid noladin ether acts as a full agonist at human CB2 cannabinoid receptors.
Topics: Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Analgesics; Animals; Arachidonic Acids; Binding, Competitive; Biotransformation; CHO Cells; Cricetinae; Cyclic AMP; Cyclohexanols; Down-Regulation; Endocannabinoids; Enzyme Inhibitors; Glycerides; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); HL-60 Cells; Humans; In Vitro Techniques; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, G-Protein-Coupled; Transfection | 2005 |
Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors.
Topics: Adenylyl Cyclases; Animals; Arachidonic Acids; Binding, Competitive; Blotting, Western; Calcium Signaling; Cannabinoid Receptor Modulators; Cell Membrane; CHO Cells; Cricetinae; Cyclic AMP; Cyclohexanols; DNA, Complementary; Endocannabinoids; Enzyme-Linked Immunosorbent Assay; Glycerides; GTP-Binding Protein alpha Subunits, Gi-Go; Humans; Indoles; Mitogen-Activated Protein Kinases; Receptor, Cannabinoid, CB2; Transfection | 2005 |
Persistent anxiogenic effects of a single or repeated doses of cocaine and methamphetamine: interactions with endogenous cannabinoid receptor ligands.
Topics: Analysis of Variance; Animals; Anxiety; Arachidonic Acids; Behavior, Animal; Cannabinoids; Cocaine; Cyclohexanols; Dopamine; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Glycerides; Injections, Intraperitoneal; Male; Maze Learning; Methamphetamine; Mice; Mice, Inbred ICR; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Time Factors | 2005 |