Page last updated: 2024-08-18

cyclohexanol and capsazepine

cyclohexanol has been researched along with capsazepine in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (66.67)29.6817
2010's2 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Craib, SJ; Ellington, HC; Pertwee, RG; Ross, RA1
Erbelding, D; Kilbinger, H; Mang, CF1
Köfalvi, A; Ledent, C; Sperlágh, B; Vizi, ES1
Kendall, DA; O'Sullivan, SE; Randall, MD1
Andersson, KE; Gratzke, C; Hedlund, P; Stief, C; Streng, T; Weinhold, P1
Holik, AK; Krammer, GE; Ley, JP; Pignitter, M; Rohm, B; Somoza, MM; Somoza, V; Zaunschirm, M1

Other Studies

6 other study(ies) available for cyclohexanol and capsazepine

ArticleYear
A possible role of lipoxygenase in the activation of vanilloid receptors by anandamide in the guinea-pig bronchus.
    British journal of pharmacology, 2001, Volume: 134, Issue:1

    Topics: 5,8,11,14-Eicosatetraynoic Acid; Animals; Arachidonic Acids; Bronchi; Calcium Channel Blockers; Capsaicin; Cyclohexanols; Dose-Response Relationship, Drug; Endocannabinoids; Fatty Acids, Unsaturated; Guinea Pigs; Hydrazines; In Vitro Techniques; Indomethacin; Lipoxygenase; Muscle Contraction; Oxazepines; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Drug; Rimonabant; Thiorphan

2001
Differential effects of anandamide on acetylcholine release in the guinea-pig ileum mediated via vanilloid and non-CB1 cannabinoid receptors.
    British journal of pharmacology, 2001, Volume: 134, Issue:1

    Topics: Acetylcholine; Animals; Arachidonic Acids; Camphanes; Capsaicin; Cyclohexanols; Dose-Response Relationship, Drug; Electric Stimulation; Endocannabinoids; Guinea Pigs; Ileum; In Vitro Techniques; Male; Methacholine Chloride; Muscle Contraction; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant

2001
Cannabinoids inhibit the release of [3H]glutamate from rodent hippocampal synaptosomes via a novel CB1 receptor-independent action.
    The European journal of neuroscience, 2003, Volume: 18, Issue:7

    Topics: Analgesics; Animals; Arachidonic Acids; Benzoxazines; Cannabinoids; Capsaicin; Chromatography, High Pressure Liquid; Cyclohexanols; Dose-Response Relationship, Drug; Drug Interactions; Glutamic Acid; Hippocampus; Male; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Radioactivity; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Synaptosomes; Tritium

2003
The effects of Delta9-tetrahydrocannabinol in rat mesenteric vasculature, and its interactions with the endocannabinoid anandamide.
    British journal of pharmacology, 2005, Volume: 145, Issue:4

    Topics: Animals; Apamin; Arachidonic Acids; Azepines; Barium Compounds; Biological Factors; Calcium; Cannabinoid Receptor Modulators; Capsaicin; Charybdotoxin; Chlorides; Cyclohexanols; Dose-Response Relationship, Drug; Dronabinol; Drug Interactions; Endocannabinoids; Endothelium, Vascular; Female; In Vitro Techniques; Indoles; Male; Mesenteric Arteries; Pertussis Toxin; Piperidines; Polyunsaturated Alkamides; Potassium Channel Blockers; Potassium Channels; Pyrazoles; Rats; Rats, Wistar; Rimonabant; Vasodilation; Verapamil

2005
TRPA1 receptor induced relaxation of the human urethra involves TRPV1 and cannabinoid receptor mediated signals, and cyclooxygenase activation.
    The Journal of urology, 2010, Volume: 183, Issue:5

    Topics: Acrolein; Analysis of Variance; Arginine; Calcium Channels; Capsaicin; Cyclohexanols; Female; Humans; Immunohistochemistry; Indomethacin; Isothiocyanates; Male; Middle Aged; Nerve Tissue Proteins; Receptors, Cannabinoid; Signal Transduction; Transient Receptor Potential Channels; TRPA1 Cation Channel; TRPV Cation Channels; Urethra

2010
Nonivamide, a capsaicin analog, increases dopamine and serotonin release in SH-SY5Y cells via a TRPV1-independent pathway.
    Molecular nutrition & food research, 2013, Volume: 57, Issue:11

    Topics: Capsaicin; Cell Line, Tumor; Cell Survival; Cyclohexanols; Dopamine; Dose-Response Relationship, Drug; Gene Expression Regulation; Humans; Sensory System Agents; Serotonin; Signal Transduction; TRPV Cation Channels

2013