cyclin-d1 has been researched along with sulforaphane* in 9 studies
9 other study(ies) available for cyclin-d1 and sulforaphane
Article | Year |
---|---|
Therapeutic effects of sulforaphane in ulcerative colitis: effect on antioxidant activity, mitochondrial biogenesis and DNA polymerization.
Ulcerative colitis (UC), an inflammatory bowel disease, affects mucosal lining of colon leading to inflammation and ulcers. Sulforaphane is a natural compound obtained from cruciferous vegetables. We aimed to investigate potential therapeutic effects of sulforaphane in experimentally induced UC in rats through affection antioxidant activity, mitochondrial biogenesis and DNA polymerization.. UC was induced in rats via an intracolonic single administration of 2 ml of 4% acetic acid. UC rats were treated with 15 mg/kg sulforaphane. Samples of colon were used to investigate gene expression and protein levels of peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), mammalian target of rapamycin (mTOR), cyclin D1, nuclear factor erythroid 2-related factor-2 (Nrf2), heme Oxygenase-1 (HO-1) and proliferating cell nuclear antigen (PCNA).. UC showed dark distorted Goblet cell nucleus with disarranged mucus granules and no distinct brush border with atypical microvilli. All morphological changes were improved by treating with sulforaphane. Finally, treatment with sulforaphane significantly increased expression of PGC-1, TFAM, Nrf2 and HO-1 associated with reduction in expression of mTOR, cyclin D1 and PCNA.. Sulforaphane could cure UC in rats. The protective activity can be explained by enhancing antioxidant activity, elevating mitochondrial biogenesis and inhibiting DNA polymerization. Topics: Animals; Antioxidants; Colitis, Ulcerative; Cyclin D1; DNA; Isothiocyanates; Mammals; NF-E2-Related Factor 2; Organelle Biogenesis; Polymerization; Proliferating Cell Nuclear Antigen; Rats; Sulfoxides; TOR Serine-Threonine Kinases | 2022 |
The effects of the dietary compound L-sulforaphane against respiratory pathogens.
L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S. pyogenes and RSV, vaccines have not been licensed for use in humans. Therefore, alternative strategies to prevent and/or treat these common infectious diseases are urgently needed. This study was conducted to investigate the antimicrobial effects of LSF against common respiratory pathogens, S. pneumoniae (serotypes 1 and 6B), H. influenzae type B (HiB), non-typeable H. influenzae (NTHi), S. pyogenes and RSV in relevant human cell-based models. LSF significantly inhibited the growth of H. influenzae, but not S. pneumoniae or S. pyogenes. LSF did not improve opsonophagocytic capacity or killing by human phagocytic cell lines (HL-60s and THP-1 macrophages) for S. pneumoniae yet showed some improved killing for H. influenzae species in THP-1 macrophages. However, LSF significantly reduced RSV infection in human lung epithelial cells, associated with increased expression of cyclin D1 (CCND1) gene as well as the antioxidant genes, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX-1). Overall, LSF represents an exciting avenue for further antimicrobial research, particularly as a novel therapy against H. influenzae species and RSV. Topics: Anti-Bacterial Agents; Cell Line; Cyclin D1; Haemophilus Infections; Haemophilus influenzae; Heme Oxygenase-1; HL-60 Cells; Humans; Isothiocyanates; Macrophages; Microbial Sensitivity Tests; NF-E2-Related Factor 2; Opsonization; Pneumococcal Infections; Respiratory Syncytial Virus Infections; Respiratory Syncytial Viruses; Respiratory Tract Infections; Streptococcus pneumoniae; Streptococcus pyogenes; Sulfoxides; THP-1 Cells; Vegetables | 2021 |
Expression of cyclin B1, D1 and K in non‑small cell lung cancer H1299 cells following treatment with sulforaphane.
Sulforaphane (SFN) was first isolated from broccoli sprout and it is present at high concentrations in plants belonging to the Cruciferae family. The chemotherapeutic and anti‑cancerogenic capacities of SFN have been demonstrated by inhibition of cancer cell proliferation in several cancer cell lines. The aim of the present study was to evaluate the effect of SFN on apoptosis, cell cycle and expression of selected cell cycle‑associated proteins: Cyclin B1, cyclin D1 and cyclin K in the H1299 cell line. The non‑small cell lung cancer cell line H1299 was treated with increasing concentrations of SFN (5, 10 and 15 µM) for two days. After incubation, the percentage of cells in the individual cell cycle phases, as well as the percentage of necrotic and apoptotic cells, were estimated using flow cytometry. The expression of cyclins was examined by immunofluorescence staining, flow cytometry, western blot analysis and qRT‑PCR. Cyclin K was characterized by nuclear localization and increased expression after treatment with SFN. The expression data were confirmed by qRT‑PCR. SFN‑induced cell cycle arrest was associated with a decrease in cyclin B1 expression. Cells treated with SFN were also characterized by higher cyclin D1 and cyclin K expression. These data suggest the involvement of cyclin K in response to SFN. Moreover, we investigated the prognostic value of cyclin K, CDK12 and CDK13 in adenocarcinoma patients using 'The Kaplan‑Meier plotter' (KM plotter) database. It was shown that high expression of CDK12 and CDK13 but no cyclin K proteins is associated with worse overall survival among adenocarcinoma patients. Topics: Anticarcinogenic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Cycle Checkpoints; Cell Division; Cell Line, Tumor; Cyclin B1; Cyclin D1; Cyclins; Humans; Isothiocyanates; Lung Neoplasms; Sulfoxides | 2019 |
Effects of sulforaphane on neural stem cell proliferation and differentiation.
Sulforaphane (SFN) is a natural organosulfur compound with anti-oxidant and anti-inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki-67 staining. The level of Tuj-1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β-catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK-1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK-1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway. Topics: Animals; Anticarcinogenic Agents; beta Catenin; Cell Proliferation; Cells, Cultured; Cyclin D1; Isothiocyanates; Neural Stem Cells; Neurogenesis; Rats; Rats, Sprague-Dawley; Sulfoxides; Wnt Signaling Pathway | 2017 |
Sulforaphane inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation by targeting mTOR/p70S6kinase signaling independent of Nrf2 activation.
Activation of nuclear factor erythroid 2-related factor 2 (Nrf2, a transcription factor) and/or inhibition of mammalian target of rapamycin (mTOR) are implicated in the suppression of vascular smooth muscle cell (VSMC) proliferation. The present study has examined the likely regulatory effects of sulforaphane (SFN, an antioxidant) on Nrf2 activation and platelet-derived growth factor (PDGF)-induced mTOR signaling in VSMCs. Using human aortic VSMCs, nuclear extraction and siRNA-mediated downregulation studies were performed to determine the role of Nrf2 on SFN regulation of PDGF-induced proliferative signaling. Immunoprecipitation and/or immunoblot studies were carried out to determine how SFN regulates PDGF-induced mTOR/p70S6K/S6 versus ERK and Akt signaling. Immunohistochemical analysis was performed to determine SFN regulation of S6 phosphorylation in the injured mouse femoral artery. SFN (5μM) inhibits PDGF-induced activation of mTOR without affecting mTOR association with raptor in VSMCs. While SFN inhibits PDGF-induced phosphorylation of p70S6K and 4E-BP1 (downstream targets of mTOR), it does not affect ERK or Akt phosphorylation. In addition, SFN diminishes exaggerated phosphorylation of S6 ribosomal protein (a downstream target of p70S6K) in VSMCs in vitro and in the neointimal layer of injured artery in vivo. Although SFN promotes Nrf2 accumulation to upregulate cytoprotective genes (e.g., heme oxygenase-1 and thioredoxin-1), downregulation of endogenous Nrf2 by target-specific siRNA reveals an Nrf2-independent effect for SFN-mediated inhibition of mTOR/p70S6K/S6 signaling and suppression of VSMC proliferation. Strategies that utilize local delivery of SFN at the lesion site may limit restenosis after angioplasty by targeting mTOR/p70S6K/S6 axis in VSMCs independent of Nrf2 activation. Topics: Animals; Antioxidants; Cell Line; Cell Proliferation; Cyclin D1; Humans; Isothiocyanates; Male; Mice, Inbred C57BL; Muscle, Smooth, Vascular; NF-E2-Related Factor 2; Platelet-Derived Growth Factor; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sulfoxides; TOR Serine-Threonine Kinases | 2017 |
The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line.
Sulforaphane (SFN) is present in plants belonging to Cruciferae family and was first isolated from broccoli sprouts. Chemotherapeutic and anticarcinogenic properties of sulforaphane were demonstrated, however, the underlying mechanisms are not fully understood. In this study we evaluated the expression of cyclin D1 and p21 protein in SFN-treated A549 cells and correlated these results with the extent of cell death and/or cell cycle alterations, as well as determined a potential contribution of cyclin D1 to cell death. A549 cells were treated with increasing concentrations of SFN (30, 60 and 90 µM) for 24 h. Morphological and ultrastructural changes were observed using light, transmission electron microscope and videomicroscopy. Image-based cytometry was applied to evaluate the effect of SFN on apoptosis and the cell cycle. Cyclin D1 and p21 expression was determined by flow cytometry, RT-qPCR and immunofluorescence. siRNA was used to evaluate the role of cyclin D1 in the process of suforaphane-induced cell death. We found that the percentage of cyclin D1-positive cells decreased after the treatment with SFN, but at the same time mean fluorescence intensity reflecting cyclin D1 content was increased at 30 µM SFN and decreased at 60 and 90 µM SFN. Percentage of p21-positive cells increased following the treatment, with the highest increase at 60 µM SFN, at which concentration mean fluorescence intensity of this protein was also significantly increased. The 30-µM dose of SFN induced an increased G2/M phase population along with a decreased polyploid fraction of cells, which implies a functional G2/M arrest. The major mode of cell death induced by SFN was necrosis and, to a lower degree apoptosis. Transfection with cyclin D1-siRNA resulted in significantly compromised fraction of apoptotic and necrotic cells, which suggests that cyclin D1 is an important determinant of the therapeutic efficiency of SFN in the A549 cells. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p21; Gene Expression Regulation, Neoplastic; Humans; Isothiocyanates; Lung Neoplasms; Sulfoxides | 2016 |
p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1.
Isothiocyanate sulforaphane (SFN) is a potent cancer chemopreventive agent. We investigated the mechanisms underlying the anti-proliferative effects of SFN in the human colon carcinoma cell line, HT-29. We demonstrate that SFN inhibits the growth of HT-29 cells in a dose- and time-dependent manner. Treatment of serum-stimulated HT-29 cells with SFN suppressed the re-initiation of cell cycle by inducing a G(1) phase cell cycle arrest. At high doses (>25 microM), SFN dramatically induces the expression of p21(CIP1) while significantly inhibits the expression of the G(1) phase cell cycle regulatory genes such as cyclin D1, cyclin A, and c-myc. This regulation can be detected at both the mRNA and protein levels as early as 4 h post-treatment of SFN at 50 microM. Additionally, SFN activates MAPKs pathways, including ERK, JNK and p38. Exposure of HT-29 cells with both SFN and an antioxidant, either NAC or GSH, completely blocked the SFN-mediated activation of these MAPK signaling cascades, regulation of cyclin D1and p21(CIP1) gene expression, and G(1)phase cell cycle arrest. This finding suggests that SFN-induced oxidative stress plays a role in these observed effects. Furthermore, the activation of the ERK and p38 pathways by SFN is involved in the upregulation of p21(CIP1) and cyclin D1, whereas the activation of the JNK pathway plays a contradictory role and may be partially involved in the downregulation of cyclin D1. Because cyclin D1 and p21(CIP1) play opposing roles in G(1) phase cell cycle progression regulation, blocking the activation of each MAPK pathway with specific MAPK inhibitors, is unable to rescue the SFN-induced G(1) phase cell cycle arrest in HT-29 cells. Topics: Acetylcysteine; Anticarcinogenic Agents; Blotting, Western; Cell Proliferation; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p21; Dose-Response Relationship, Drug; Enzyme Activation; G1 Phase; Gene Expression; Glutathione; HT29 Cells; Humans; Isothiocyanates; Mitogen-Activated Protein Kinases; Reverse Transcriptase Polymerase Chain Reaction; Sulfoxides; Tetrazolium Salts; Thiocyanates; Time Factors; Tumor Suppressor Protein p53; Up-Regulation | 2006 |
Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells.
Recent studies indicate that natural isothiocyanates, such as sulforaphane (SFN) and phenethyl isothiocyanate (PEITC) possess strong antitumor activities in vitro and in vivo. The nuclear factor kappa B (NF-kappaB) is believed to play an important role in cancer chemoprevention due to its involvement in tumor cell growth, proliferation, angiogenesis, invasion, apoptosis, and survival. In this study, we investigated the effects and the molecular mechanisms of SFN and PEITC on NF-kappaB transcriptional activation and NF-kappaB-regulated gene expression in human prostate cancer PC-3 C4 cells. Treatment with SFN (20 and 30 microM) and PEITC (5 and 7.5 microM) significantly inhibited NF-kappaB transcriptional activity, nuclear transloction of p65, and gene expression of NF-kappaB-regulated VEGF, cylcin D1, and Bcl-X(L) in PC-3 C4 cells. To further elucidate the mechanism, we utilized the dominant-negative mutant of inhibitor of NF-kappaB alpha (IkappaBalpha) (SR-IkappaBalpha). Analogous to treatments with SFN and PEITC, SR-IkappaBalpha also strongly inhibited NF-kappaB transcriptional activity as well as VEGF, cylcin D1, and Bcl-X(L) expression. Furthermore, SFN and PEITC also inhibited the basal and UVC-induced phosphorylation of IkappaBalpha and blocked UVC-induced IkappaBalpha degradation in PC-3 C4 cells. In examining the upstream signaling, we found that the dominant-negative mutant of IKKbeta (dnIKKbeta) possessed inhibitory effects similar to SFN and PEITC on NF-kappaB, VEGF, cylcin D1, Bcl-X(L) as well as IkappaBalpha phosphorylation. In addition, treatment with SFN and PEITC potently inhibited phosphorylation of both IKKbeta and IKKalpha and significantly inhibited the in vitro phosphorylation of IkappaBalpha mediated by IKKbeta. Taken together, these results suggest that the inhibition of SFN and PEITC on NF-kappaB transcriptional activation as well as NF-kappaB-regulated VEGF, cyclin D1, and Bcl-X(L) gene expression is mainly mediated through the inhibition of IKK phosphorylation, particularly IKKbeta, and the inhibition of IkappaBalpha phosphorylation and degradation, as well as the decrease of nuclear translocation of p65 in PC-3 cells. Topics: Anticarcinogenic Agents; bcl-X Protein; Cell Line, Tumor; Cell Survival; Cyclin D1; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Humans; I-kappa B Kinase; I-kappa B Proteins; Isothiocyanates; Male; NF-kappa B; NF-KappaB Inhibitor alpha; Phosphorylation; Prostatic Neoplasms; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-bcl-2; Sulfoxides; Thiocyanates; Transcription, Genetic; Vascular Endothelial Growth Factor A | 2005 |
Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells.
The relation between the consumption of cruciferous vegetables and reduced prostate cancer occurrence has been documented, although the responsible phytochemicals are unknown. The effects of sulforaphane (SFN) which occurs as the precursor glucosinolate in broccoli and other cruciferous vegetables, and its metabolite N-acetylcysteine conjugate (SFN-NAC) on prostate cancer cells were investigated. SFN and SFN-NAC were analyzed with the androgen-dependent human prostate cancer LNCaP cell line model. Cell growth and apoptosis were determined with the expression of androgen receptor and prostate specific antigen, DNA synthesis, cell cycle progression, DNA strand breaks and caspase activation to ascertain the effects and mechanism. SFN and SFN-NAC were demonstrated for the first time to mediate a dose-dependent apoptosis and growth arrest in the prostate cancer cells. Caspases were activated and DNA strand breaks were detected in apoptotic cells. The expression of phosphorylated and dephosphorylated androgen receptors, and the production of prostate specific antigen were attenuated. The expression of cyclin D1 and DNA synthesis were inhibited along with G1 cell cycle block, causing decreased cell density and growth. SFN and its metabolite SFN-NAC have similar activities to induce growth arrest and apoptosis, indicating that the effects of SFN are maintained through the metabolic processes. SFN as a dietary component of cruciferous vegetables active in the prevention of prostate cancer is discussed. Topics: Anticarcinogenic Agents; Apoptosis; Cell Cycle; Cell Division; Cyclin D1; Dose-Response Relationship, Drug; Humans; Isothiocyanates; Male; Prostate-Specific Antigen; Prostatic Neoplasms; Sulfoxides; Thiocyanates; Tumor Cells, Cultured | 2002 |