cyclin-d1 and resiniferatoxin

cyclin-d1 has been researched along with resiniferatoxin* in 2 studies

Other Studies

2 other study(ies) available for cyclin-d1 and resiniferatoxin

ArticleYear
Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells.
    The Journal of pharmacology and experimental therapeutics, 2007, Volume: 321, Issue:3

    Transient receptor potential vanilloid 1 (TRPV1) is a calcium-selective ion channel expressed in human lung cells. We show that activation of the intracellular subpopulation of TRPV1 causes endoplasmic reticulum (ER) stress and cell death in human bronchial epithelial and alveolar cells. TRPV1 agonist (nonivamide) treatment caused calcium release from the ER and altered the transcription of growth arrest- and DNA damage-inducible transcript 3 (GADD153), GADD45alpha, GRP78/BiP, ATF3, CCND1, and CCNG2) in a manner comparable with prototypical ER stress-inducing agents. The TRPV1 antagonist N-(4-tert-butylbenzyl)-N'-(1-[3-fluoro-4-(methylsulfonylamino)-phenyl]ethyl)thiourea (LJO-328) inhibited mRNA responses and cytotoxicity. EGTA and ruthenium red inhibited cell surface TRPV1 activity, but they did not prevent ER stress gene responses or cytotoxicity. Cytotoxicity paralleled eukaryotic translation initiation factor 2, subunit 1 (EIF2alpha) phosphorylation and the induction of GADD153 mRNA and protein. Transient overexpression of GADD153 caused cell death independent of agonist treatment, and cells selected for stable overexpression of a GADD153 dominant-negative mutant exhibited reduced sensitivity. Salubrinal, an inhibitor of ER stress-induced cytotoxicity via the EIF2alphaK3/EIF2alpha pathway, or stable overexpression of the EIF2alpha-S52A dominant-negative mutant also inhibited cell death. Treatment of the TRPV1-null human embryonic kidney 293 cell line with TRPV1 agonists did not initiate ER stress responses. Likewise, n-benzylnonanamide, an inactive analog of nonivamide, failed to cause ER calcium release, an increase in GADD153 expression, and cytotoxicity. We conclude that activation of ER-bound TRPV1 and stimulation of GADD153 expression via the EIF2alphaK3/EIF2alpha pathway represents a common mechanism for cytotoxicity by cell-permeable TRPV1 agonists. These findings are significant within the context of lung inflammatory diseases where elevated concentrations of endogenous TRPV1 agonists are probably produced in sufficient quantities to cause TRPV1 activation and lung cell death.

    Topics: Activating Transcription Factor 3; Arachidonic Acids; Calcium; Capsaicin; Cell Line; Cell Line, Tumor; Cell Survival; Cells, Cultured; Cinnamates; Cyclin D1; Cyclin G2; Cyclins; Diterpenes; Dithiothreitol; Endocannabinoids; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Enzyme Inhibitors; Epithelial Cells; Eukaryotic Initiation Factor-2; Gene Expression; Humans; Lung; Phosphorylation; Polyunsaturated Alkamides; Thapsigargin; Thiourea; Transcription Factor CHOP; Transfection; TRPV Cation Channels

2007
Cell cycle- and protein kinase C-specific effects of resiniferatoxin and resiniferonol 9,13,14-ortho-phenylacetate in intestinal epithelial cells.
    Biochemical pharmacology, 2004, May-15, Volume: 67, Issue:10

    We have previously reported that protein kinase C (PKC) signaling can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells, including downregulation of cyclin D1, induction of p21(Waf1/Cip1), and activation of the growth suppressor function of pocket proteins. In the current study, we compared the cell cycle- and PKC-specific effects of the vanilloid resiniferatoxin (RTX), its parent diterpene resiniferonol 9,13,14-ortho-phenylacetate (ROPA), and the PKC agonist PMA in the IEC-18 non-transformed intestinal crypt cell line. ROPA and PMA were found to produce strikingly similar alterations in cell cycle progression and PKC activity in IEC-18 cells, although PMA was approximately 1000-fold more potent in producing these effects. Both agents induced a transient PKC-dependent blockade in G1---> S progression associated with transient downregulation of cyclin D1 and induction of p21(Waf1/Cip1). In contrast, RTX produced a prolonged PKC-independent cell cycle arrest in G(0)/G(1) phase which was maintained for longer than 24h. This arrest was vanilloid receptor-independent and associated with prolonged downregulation of cyclin D1 mRNA and protein, with little effect on levels of p21(Waf1/Cip1). Combined exposure to RTX and ROPA produced a sustained and complete cell cycle blockade in IEC-18 cells, associated with depletion of cyclin D1 and sustained enhancement of p21(Waf1/Cip1) levels. PMA, ROPA, RTX and the RTX/ROPA combination were capable of activating ERK1/2 signaling in IEC-18 cells, albeit with different kinetics. In contrast, only PMA and ROPA activated JNK1/2 and p38 in this system. Notably, some preparations of commercially obtained RTX produced effects indistinguishable from those of the RTX/ROPA combination, suggesting that certain batches of the compound may contain significant amounts of ROPA (or another PKC agonist activity). Together, these data demonstrate that structurally related compounds can produce similar cell cycle-specific effects but through distinct mechanisms. In addition, they add to a growing body of evidence that vanilloids can have antiproliferative effects in a variety of cell types.

    Topics: Animals; Cell Cycle; Cell Line; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Diterpenes; Drug Interactions; Enzyme Activation; Intestinal Mucosa; JNK Mitogen-Activated Protein Kinases; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Protein Kinase C; Rats; Signal Transduction; Tetradecanoylphorbol Acetate

2004