cyclin-d1 and aurapten

cyclin-d1 has been researched along with aurapten* in 2 studies

Other Studies

2 other study(ies) available for cyclin-d1 and aurapten

ArticleYear
Anti-tumor effects of Auraptene through induction of apoptosis and oxidative stress in a mouse model of colorectal cancer.
    Tissue & cell, 2023, Volume: 81

    The main strategy of cancer cells for survival is uncontrolled cell division and escape from apoptosis. The use of anticancer agents inducing the production of reactive oxygen species (ROS) and controlling cell division might be a therapeutic approach to eradicate cancer cells. Herein, we examined the therapeutic effects of Auraptene on CT26 cells as well as on a mouse model of colorectal cancer (CRC). The spheroid assay was also conducted to analyze the anti-proliferative activity of Auraptene. We also assessed the in vitro analysis of ROS generation. The impact of Auraptene on oxidant/antioxidant markers, as well as the mRNA expression of Bax, Bcl-2, Nrf2, Cyclin D1, and Survivin genes, was evaluated by qPCR in tumor samples. As a result, Auraptene significantly reduced the size of CT26 spheroids at a dose of 200 µM. After 12 h, ROS levels were significantly elevated in CT26 cells. The administration of Auraptene induced apoptosis and the cell cycle arrest by modulating Bax, Bcl-2, Nrf2, Cyclin D1, and Survivin mRNA levels. Furthermore, our results demonstrated that Auraptene suppressed CAT, GSH (reduced Glutathione), and FRAP while increasing MDA in tissue homogenates which in turn could raise oxidative stress and stimulate apoptosis. Therefore, Auraptene may act as a powerful adjuvant therapy in CRC since it triggers apoptosis and cell cycle.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Cell Proliferation; Colorectal Neoplasms; Coumarins; Cyclin D1; Disease Models, Animal; Mice; NF-E2-Related Factor 2; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Survivin

2023
Citrus auraptene suppresses cyclin D1 and significantly delays N-methyl nitrosourea induced mammary carcinogenesis in female Sprague-Dawley rats.
    BMC cancer, 2009, Jul-29, Volume: 9

    Breast cancer is a major problem in the United States leading to tens of thousands of deaths each year. Although citrus auraptene suppresses cancer in numerous rodent models, its role in breast cancer prevention previously has not been reported. Thus, our goal was to determine the anticarcinogenic effects of auraptene against breast cancer.. The effects of auraptene on cell proliferation of MCF-7 and MDA-MB-231 human breast carcinoma cells in culture was assessed by measuring metabolism of a substrate to a formazan dye. Dietary effects of auraptene on tumor incidence, multiplicity and latency were studied in the N-methyl nitrosourea (MNU) induced mammary carcinogenesis model in female Sprague Dawley rats. The concentration of auraptene in rat tissues was analyzed by reverse phase HPLC. Cyclin D1 expression in MCF-7 cells and rat tumors was measured by western blot.. Auraptene (500 ppm) significantly delayed median time to tumor by 39 days compared to the MNU only group (p < 0.05, n = 24-26). Auraptene (10 microM) reduced Insulin like Growth Factor-1 (IGF-1, 10 ng/mL)-induced cyclin D1 expression by 40% in MCF-7 cells. In comparison, western blot analysis of rat mammary tumors (n = 10 per group) confirmed that auraptene (500 ppm) significantly reduced (p < 0.05) cyclin D1 expression by 49% compared to the MNU only group. Analysis of rat mammary tissue extract by HPLC with fluorescence detection indicated an average concentration (means +/- S.E.) of 1.4 +/- 0.5 microM and 1.8 +/- 0.3 microM in the normal mammary glands of the auraptene 200 ppm and 500 ppm groups, respectively. The concentration (means +/- S.E.) of auraptene in the mammary tumors of the auraptene 200 ppm group was 0.31 +/- 0.98 microM.. Overall, these observations suggest that the predominant effect of auraptene was to delay the development of tumors possibly through the suppression of cyclin D1 expression. These results point to the potential chemopreventive effects of auraptene in mammary carcinogenesis.

    Topics: Animals; Anticarcinogenic Agents; Cell Line, Tumor; Cell Proliferation; Chromatography, High Pressure Liquid; Citrus; Coloring Agents; Coumarins; Cyclin D1; Female; Formazans; Humans; Methylnitrosourea; Rats; Rats, Sprague-Dawley

2009