cyclin-d1 and 7-hydroxystaurosporine

cyclin-d1 has been researched along with 7-hydroxystaurosporine* in 1 studies

Other Studies

1 other study(ies) available for cyclin-d1 and 7-hydroxystaurosporine

ArticleYear
Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways.
    Molecular cancer therapeutics, 2005, Volume: 4, Issue:3

    Interactions between the protein kinase C and Chk1 inhibitor UCN-01 and rapamycin in human leukemia cells have been investigated in relation to apoptosis induction. Treatment of U937 monocytic leukemia cells with rapamycin (10 nmol/L) in conjunction with a minimally toxic concentration of UCN-01 (100 nmol/L) for 36 hours resulted in marked potentiation of mitochondrial injury (i.e., loss of mitochondrial membrane potential and cytosolic release of cytochrome c, AIF, and Smac/DIABLO), caspase activation, and apoptosis. The release of cytochrome c, AIF, and Smac/DIABLO were inhibited by BOC-D-fmk, indicating that their release was caspase dependent. These events were associated with marked down-regulation of Raf-1, MEK, and ERK phosphorylation, diminished Akt activation, and enhanced phosphorylation of c-Jun NH2-terminal kinase (JNK). Coadministration of UCN-01 and rapamycin reduced the expression levels of the antiapoptotic members of the Bcl-2 family Mcl-1 and Bcl-xL and diminished the expression of cyclin D1 and p34(cdc2). Furthermore, enforced expression of a constitutively active MEK1 or, to a lesser extent, myristoylated Akt construct partially but significantly attenuated UCN-01/rapamycin-mediated lethality in both U937 and Jurkat cell systems. Finally, inhibition of the stress-related JNK by SP600125 or by the expression of a dominant-negative mutant of c-Jun significantly attenuated apoptosis induced by rapamycin/UCN-01. Together, these findings indicate that the mammalian target of rapamycin inhibitor potentiates UCN-01 cytotoxicity in a variety of human leukemia cell types and suggest that inhibition of both Raf-1/MEK/ERK and Akt cytoprotective signaling pathways as well as JNK activation contribute to this phenomenon.

    Topics: Antibiotics, Antineoplastic; Antineoplastic Agents; Apoptosis; Caspases; CDC2 Protein Kinase; Cell Line, Tumor; Cyclin D1; Cytochromes c; Dose-Response Relationship, Drug; Down-Regulation; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Genes, Dominant; Humans; Immunoblotting; JNK Mitogen-Activated Protein Kinases; Jurkat Cells; Leukemia; MAP Kinase Kinase 1; MAP Kinase Kinase 4; Mitogen-Activated Protein Kinase Kinases; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-raf; Signal Transduction; Sirolimus; Staurosporine; Time Factors; U937 Cells

2005