cyclic-gmp and ursodoxicoltaurine

cyclic-gmp has been researched along with ursodoxicoltaurine* in 2 studies

Other Studies

2 other study(ies) available for cyclic-gmp and ursodoxicoltaurine

ArticleYear
Endoplasmic reticulum stress mediates homocysteine-induced hypertrophy of cardiac cells through activation of cyclic nucleotide phosphodiesterase 1C.
    Acta biochimica et biophysica Sinica, 2022, Mar-25, Volume: 54, Issue:3

    Although the association of elevated homocysteine level with cardiac hypertrophy has been reported, the molecular mechanisms by which homocysteine induces cardiac hypertrophy remain inadequately understood. In this study we aim to uncover the roles of cyclic nucleotide phosphodiesterase 1 (PDE1) and endoplasmic reticulum (ER) stress and their relationship to advance the mechanistic understanding of homocysteine-induced cardiac cell hypertrophy. H9c2 cells and primary neonatal rat cardiomyocytes are exposed to homocysteine with or without ER stress inhibitor TUDCA or PDE1-specific inhibitor Lu AF58027, or transfected with siRNAs targeting PDE1 isoforms prior to homocysteine-exposure. Cell surface area is measured and ultrastructure is examined by transmission electron microscopy. Hypertrophic markers, PDE1 isoforms, and ER stress molecules are detected by q-PCR and western blot analysis. Intracellular cGMP and cAMP are measured by ELISA. The results show that homocysteine causes the enlargement of H9c2 cells, increases the expressions of hypertrophic markers β-MHC and ANP, upregulates PDE1A and PDE1C, promotes the expressions of ER stress molecules, and causes ER dilatation and degranulation. TUDCA and Lu AF58027 downregulate β-MHC and ANP, and alleviate cell enlargement. TUDCA decreases PDE1A and PDE1C levels. Silencing of PDE1C inhibits homocysteine-induced hypertrophy, whereas PDE1A knockdown has minor effect. Both cAMP and cGMP are decreased after homocysteine-exposure, while only cAMP is restored by Lu AF58027 and TUDCA. TUDCA and Lu AF58027 also inhibit cell enlargement, downregulate ANP, β-MHC and PDE1C, and enhance cAMP level in homocysteine-exposed primary cardiomyocytes. ER stress mediates homocysteine-induced hypertrophy of cardiac cells via upregulating PDE1C expression Cyclic nucleotide, especially cAMP, is the downstream mediator of the ER stress-PDE1C signaling axis in homocysteine-induced cell hypertrophy.

    Topics: Animals; Atrial Natriuretic Factor; Cardiomegaly; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 1; Endoplasmic Reticulum Stress; Enzyme Activation; Homocysteine; Myocytes, Cardiac; Phosphoric Diester Hydrolases; Rats; Taurochenodeoxycholic Acid

2022
Vasonatrin peptide attenuates myocardial ischemia-reperfusion injury in diabetic rats and underlying mechanisms.
    American journal of physiology. Heart and circulatory physiology, 2015, Feb-15, Volume: 308, Issue:4

    Diabetes mellitus increases morbidity/mortality of ischemic heart disease. Although atrial natriuretic peptide and C-type natriuretic peptide reduce the myocardial ischemia-reperfusion damage in nondiabetic rats, whether vasonatrin peptide (VNP), the artificial synthetic chimera of atrial natriuretic peptide and C-type natriuretic peptide, confers cardioprotective effects against ischemia-reperfusion injury, especially in diabetic patients, is still unclear. This study was designed to investigate the effects of VNP on ischemia-reperfusion injury in diabetic rats and to further elucidate its mechanisms. The high-fat diet-fed streptozotocin-induced diabetic Sprague-Dawley rats were subjected to ischemia-reperfusion operation. VNP treatment (100 μg/kg iv, 10 min before reperfusion) significantly improved the instantaneous first derivation of left ventricle pressure (±LV dP/dtmax) and LV systolic pressure and reduced LV end-diastolic pressure, apoptosis index, caspase-3 activity, plasma creatine kinase (CK), and lactate dehydrogenase (LDH) activities. Moreover, VNP inhibited endoplasmic reticulum (ER) stress by suppressing glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). These effects were mimicked by 8-bromine-cyclic guanosinemonophosphate (8-Br-cGMP), a cGMP analog, whereas they were inhibited by KT-5823, the selective inhibitor of PKG. In addition, pretreatment with tauroursodeoxycholic acid (TUDCA), a specific inhibitor of ER stress, could not further promote the VNP's cardioprotective effect in diabetic rats. In vitro H9c2 cardiomyocytes were subjected to hypoxia/reoxygenation and incubated with or without VNP (10(-8) mol/l). Gene knockdown of PKG1α with siRNA blunted VNP inhibition of ER stress and apoptosis, while overexpression of PKG1α resulted in significant decreased ER stress and apoptosis. VNP protects the diabetic heart against ischemia-reperfusion injury by inhibiting ER stress via the cGMP-PKG signaling pathway. These results suggest that VNP may have potential therapeutic value for the diabetic patients with ischemic heart disease.

    Topics: Animals; Apoptosis; Atrial Natriuretic Factor; Carbazoles; Caspase 3; Cell Hypoxia; Cell Line; Creatine Kinase; Cyclic GMP; Cyclic GMP-Dependent Protein Kinase Type I; Diabetes Mellitus, Experimental; Endoplasmic Reticulum Stress; Heart Ventricles; Male; Myocardial Reperfusion Injury; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Taurochenodeoxycholic Acid; Transcription Factor CHOP; Ventricular Function

2015