cyclic-gmp and triflusal

cyclic-gmp has been researched along with triflusal* in 2 studies

Other Studies

2 other study(ies) available for cyclic-gmp and triflusal

ArticleYear
[The effect of triflusal on human platelet aggregation and secretion: the role of nitric oxide].
    Revista espanola de cardiologia, 2000, Volume: 53, Issue:2

    The thrombotic process is a multicellular phenomenon in which not only platelets are involved but also neutrophils are involved. Recent in vitro studies performed in our laboratory have demonstrated that triflusal reduced platelet aggregation by stimulating nitric oxide (NO) production by neutrophils. The aim of the present study was to evaluate whether the in vivo treatment with triflusal could also modify the ability of neutrophils to produce NO. Furthermore, the role of NO released by neutrophils on platelet aggregation and secretion was also tested.. The study was performed in 12 healthy volunteers of 32 +/- 6 years of age. The volunteers were treated with triflusal (600 mg/day) for 5 days and platelets and neutrophils were isolated before and after treatment. The ability of neutrophils to produce NO and the capacity of inhibiting platelet aggregation and secretion of transforming growth factor-beta (TGF-beta) were assessed.. After the treatment with triflusal we obtained the following results: a) an increase in NO production by neutrophils; b) potentiation of the inhibition of platelet aggregation by neutrophils, an effect that was reverted by incubating neutrophils with an L-arginine antagonist, L-NAME, and c) the presence of neutrophils reduced the release of TGF-beta by platelets measured as index of platelet secretion by a NO-independent mechanism.. Triflusal (600 mg/day/5 days) stimulated NO production by neutrophils. After the treatment with triflusal, neutrophils inhibited both platelet aggregation and secretion. The antiaggregating effect of neutrophils was an NO-dependent mechanism while the inhibition of platelet secretion mediated by neutrophils after the treatment with triflusal was an NO-independent mechanism.

    Topics: Adult; Blood Platelets; Citrulline; Cyclic GMP; Guanosine Monophosphate; Humans; Neutrophils; Nitric Oxide; Platelet Aggregation; Platelet Aggregation Inhibitors; Salicylates; Transforming Growth Factor beta

2000
Comparison of in vitro effects of triflusal and acetysalicylic acid on nitric oxide synthesis by human neutrophils.
    European journal of pharmacology, 1998, Feb-05, Volume: 343, Issue:1

    Recent studies have suggested that the protective anti-ischemic effects of acetylsalicylic acid are stronger than the inhibition of platelet thromboxane A2 synthesis. Since ischemic events still occur in acetylsalicylic acid-treated patients, the development of new drugs with more powerful protective effects is needed. We compared the effects of a new platelet antiaggregating drug, 2-acetoxy-4-trifluoromethyl-benzoic acid (triflusal) and of acetylsalicylic acid on the interaction between human neutrophils and platelets, examining the capability of neutrophils to generate nitric oxide (NO). Triflusal, in the presence of neutrophils, showed a greater antiplatelet potency than acetylsalicylic acid to inhibit thrombin-induced platelet activation. Significant stimulation of NO-mediated mechanisms in the presence of acetylsalicylic acid or triflusal was demonstrated by the following findings: (1) increased metabolism of arginine to citrulline, (2) increase of cGMP in the platelet/neutrophil system and (3) the inhibitory action of the L-arginine (L-Arg) competitive analogue, NG-nitro-L-arginine-methyl ester (L-NAME), which was reversed by L-Arg. Triflusal increased the stimulation of NO synthesis by neutrophils more than did of acetylsalicylic acid. The main metabolite of triflusal, 2-hydroxy-4-trifluoromethylbenzoic acid (HTB), alone or in combination with acetylsalicylic acid, did not modify NO production by neutrophils. Therefore, the whole molecule of triflusal is needed to stimulate NO production by neutrophils. Our results show that, in the presence of neutrophils, triflusal exerts an antiplatelet effect greater than that of acetylsalicylic acid, demonstrating a more powerful stimulation of the NO/cGMP system. The present results indicate that it is possible to develop new and more potent acetylsalicylic acid-related antiplatelet drugs for the prevention of the myocardial ischemic/reperfusion processes.

    Topics: Aspirin; Cyclic GMP; Cyclooxygenase Inhibitors; Humans; Neutrophils; Nitric Oxide; Platelet Aggregation Inhibitors; Salicylates

1998