cyclic-gmp has been researched along with thiazolyl-blue* in 7 studies
7 other study(ies) available for cyclic-gmp and thiazolyl-blue
Article | Year |
---|---|
Metabotropic glutamate receptor 3 activation prevents nitric oxide-induced death in cultured rat astrocytes.
Altered glial function may contribute to the initiation or progression of neuronal death in neurodegenerative diseases. Thus, modulation of astrocyte death may be essential for preventing pathological processes in the CNS. In recent years, metabotropic glutamate receptor (mGluR) activation has emerged as a key target for neuroprotection. We investigated the effect of subtype 3 mGluR (mGluR3) activation on nitric oxide (NO)-induced astroglial death. A mGluR3 selective agonist, LY379268, reduced inducible NO synthase expression and NO release induced by bacterial lipopolysaccharide and interferon-gamma in cultured rat astrocytes. In turn, a NO donor (diethylenetriamine/NO) induced apoptotic-like death in cultured astrocytes, which showed apoptotic morphology and DNA fragmentation, but no caspase 3 activation. LY379268 prevented astrocyte death induced by NO exposure, which correlates with a reduction in: phosphatidylserine externalization, p53 and Bax activation and mitochondrial permeability. The reported effects of LY379268 were prevented by the mGluR3 antagonist (s)-alpha-ethylglutamic acid. All together, these findings show the protective effect of mGluR3 activation on astroglial death and provide further evidence of a role of these receptors in preventing CNS injury triggered by several inflammatory processes associated with dysregulated NO production. Topics: 1-Methyl-3-isobutylxanthine; Amino Acids; Animals; Animals, Newborn; Astrocytes; Bridged Bicyclo Compounds, Heterocyclic; Caspase 3; Cell Death; Cells, Cultured; Cerebral Cortex; Cyclic AMP; Cyclic GMP; Cytochromes c; DNA Fragmentation; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Gene Expression Regulation; In Situ Nick-End Labeling; Interferon-gamma; Neurotransmitter Agents; Nitric Oxide; Nitric Oxide Donors; Phosphatidylserines; Phosphodiesterase Inhibitors; Polyamines; Polysaccharides; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Tetrazolium Salts; Thiazoles | 2010 |
Nitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathways.
Nitric oxide (NO) is an important signaling molecule in the CNS, regulating neuronal survival, proliferation and differentiation. Here, we explored the mechanism by which NO, produced from the NO donor S-nitroso-acetyl-d-l-penicillamine (SNAP), exerts its neuroprotective effect in purified cultures of chick retinal neurons. Cultures prepared from 8-day-old chick embryo retinas and incubated for 24 h (1 day in culture, C1) were treated or not with SNAP, incubated for a further 72 h (up to 4 days in culture, C4), fixed, and the number of cells estimated, or processed for cell death estimation, by measuring the reduction of the metabolic dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Experimental cultures were run in parallel but were re-fed with fresh medium in the absence or presence of SNAP at culture day 3 (C3), incubated for a further 24 h up to C4, then fixed or processed for the MTT assay. Previous studies showed that the re-feeding procedure promotes extensive cell death. SNAP prevented this death in a concentration- and time-dependent manner through the activation of soluble guanylate cyclase; this protection was significantly reversed by the enzyme inhibitors 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or LY83583, and mimicked by 8-bromo cyclic guanosine 5'-phosphate (8Br-cGMP) (GMP) or 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), guanylate cyclase activators. The effect was blocked by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The effect of NO was also suppressed by LY294002, Wortmannin, PD98059, KN93 or H89, indicating the involvement, respectively, of phosphatidylinositol-3 kinase, extracellular-regulated kinases, calmodulin-dependent kinases and protein kinase A signaling pathways. NO also induced a significant increase of neurite outgrowth, indicative of neuronal differentiation, and blocked cell death induced by hydrogen peroxide. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore considered an important mediator of apoptosis and necrosis, as well as boc-aspartyl (OMe) fluoromethylketone (BAF), a caspase inhibitor, also blocked cell death induced by re-feeding the cultures. These findings demonstrate that NO inhibits apoptosis of retinal neurons in a cGMP/protein kinase G (PKG)-dependent way, and strengthens the notion that NO plays an important role during CNS development. Topics: Adenosine; Aminoquinolines; Analysis of Variance; Animals; Cell Survival; Cells, Cultured; Chick Embryo; Cyclic GMP; Cyclic N-Oxides; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Free Radical Scavengers; Imidazoles; Neurons; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitrites; Penicillamine; Retina; Signal Transduction; Tetrazolium Salts; Thiazoles; Tritium | 2007 |
Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide.
Increased expression of glial fibrillary acidic protein (GFAP) represents astroglial activation and gliosis during neurodegeneration. However, the molecular mechanism behind increased expression of GFAP in astrocytes is poorly understood. The present study was undertaken to explore the role of nitric oxide (NO) in the expression of GFAP. Bacterial lipopolysachharides (LPSs) induced the production of NO and the expression of GFAP in mouse primary astrocytes. Either a scavenger of NO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)] or an inhibitor of inducible nitric oxide synthase [l-N6-(I-iminoethyl)-lysine hydrochloride] blocked this induction of GFAP expression. Similarly, other inducers of NO production such as interferon-gamma, interleukin-1beta, human immunodeficiency virus type 1 gp120, fibrillar amyloid beta peptides, and double-stranded RNA (polyinosinic-polycytidilic acid) also induced the expression of GFAP through NO. The role of NO in the expression of GFAP was supported further by increased expression of GFAP by S-nitroso glutathione (GSNO), an NO donor. Interestingly, inhibition of nuclear factor kappaB (NF-kappaB) suppressed LPS- but not GSNO-induced expression of GFAP, suggesting that NO does not require NF-kappaB to induce GFAP and that NF-kappaB functions upstream of NO production. However, inhibition of LPS- and GSNO-induced expression of GFAP either by NS-2028 [a specific inhibitor of guanylate cyclase (GC)] or by KT5823 [a specific inhibitor of cGMP-activated protein kinase (PKG)], and induction of GFAP expression by either 8-Br cGMP (a cell-permeable cGMP analog) or MY-5445 (a specific inhibitor of cGMP phosphodiesterase) suggests that NO induces GFAP via GC-cGMP-PKG. This study illustrates a novel biological role of NO in regulating the expression of GFAP in astrocytes through the GC-cGMP-PKG pathway that may participate in the pathogenesis of neurodegenerative disorders. Topics: Animals; Animals, Newborn; Astrocytes; Cell Survival; Cells, Cultured; Cerebral Cortex; Corpus Striatum; Cyclic GMP; Cyclic N-Oxides; Cytokines; Dose-Response Relationship, Drug; Drug Interactions; Electrophoretic Mobility Shift Assay; Enzyme Inhibitors; Fluorescent Antibody Technique; Free Radical Scavengers; Gene Expression; Glial Fibrillary Acidic Protein; HIV Envelope Protein gp120; Imidazoles; Lipopolysaccharides; Lysine; Male; Mice; Mice, Inbred C57BL; Nitric Oxide; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tetrazolium Salts; Thiazoles; Thionucleotides; Time Factors | 2006 |
Role of cyclic GMP on inhibition by nitric oxide donors of human eosinophil chemotaxis in vitro.
1. This study was designed to investigate the effects of the nitric oxide (NO) donors sodium nitroprusside (SNP), 3-morpholinosydnonimine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP) on N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP, 1 x 10(-7) M)-induced human eosinophil chemotaxis, cyclic guanosine-3',5'-monophosphate (cGMP) levels, protein nitration and cytotoxicity. 2. Human eosinophils were exposed to SNP, SIN-1 and SNAP (0.001-1.0 mM) for either short (10 min) or prolonged (90 min) time periods. Exposition of eosinophils with these NO donors significantly inhibited the eosinophil chemotaxis irrespective of whether cells were exposed to these agents for 10 or 90 min. No marked differences were detected among them regarding the profile of chemotaxis inhibition. 3. Exposition of eosinophils to SNP, SIN-1 and SNAP (0.001-1.0 mM) markedly elevated the cGMP levels above basal levels, but the 90-min exposition resulted in significantly higher levels compared with the 10-min protocols (5.3+/-0.6 and 2.6+/-0.2 nM 1.5 x 10(6) cells(-1), respectively). The cGMP levels achieved with SNAP were greater than SNP and SIN-1. 4. The NO donors did not induce cell toxicity in any experimental condition used. Additionally, eosinophils exposed to SNP, SIN-1 and SNAP (1.0 mM each) either for 10 or 90 min did not show any tyrosine nitration in conditions where a strong nitration of bovine serum albumin was observed. 5. Our findings show that inhibitory effects of fMLP-induced human eosinophil chemotaxis by NO donors at short or prolonged exposition time were accompanied by significant elevations of cGMP levels. However, additional elevations of cGMP levels do not change the functional profile (chemotaxis inhibition) of stimulated eosinophils. Topics: Adolescent; Adult; Blotting, Western; Cell Survival; Chemotaxis, Leukocyte; Cyclic GMP; Eosinophils; Female; Humans; In Vitro Techniques; Male; Middle Aged; Molsidomine; N-Formylmethionine Leucyl-Phenylalanine; Nitric Oxide Donors; Nitroprusside; Penicillamine; Tetrazolium Salts; Thiazoles; Tyrosine | 2004 |
MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2',3'-dideoxycytidine and 9'-(2'-phosphonylmethoxyethyl)adenine.
MRP8 (ABCC11) is a recently identified cDNA that has been assigned to the multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporters, but its functional characteristics have not been determined. Here we examine the functional properties of the protein using transfected LLC-PK1 cells. It is shown that ectopic expression of MRP8 reduces basal intracellular levels of cAMP and cGMP and enhances cellular extrusion of cyclic nucleotides in the presence or absence of stimulation with forskolin or SIN-1A. Analysis of the sensitivity of MRP8-overexpressing cells revealed that they are resistant to a range of clinically relevant nucleotide analogs, including the anticancer fluoropyrimidines 5'-fluorouracil (approximately 3-fold), 5'-fluoro-2'-deoxyuridine (approximately 5-fold), and 5'-fluoro-5'-deoxyuridine (approximately 3-fold), the anti-human immunodeficiency virus agent 2',3'-dideoxycytidine (approximately 6-fold) and the anti-hepatitis B agent 9'-(2'-phosphonylmethoxynyl)adenine (PMEA) (approximately 5-fold). By contrast, increased resistance was not observed for several natural product chemotherapeutic agents. In accord with the notion that MRP8 functions as a drug efflux pump for nucleotide analogs, MRP8-transfected cells exhibited reduced accumulation and increased efflux of radiolabeled PMEA. In addition, it is shown by the use of in vitro transport assays that MRP8 is able to confer resistance to fluoropyrimidines by mediating the MgATP-dependent transport of 5'-fluoro-2'-deoxyuridine monophosphate, the cytotoxic intracellular metabolite of this class of agents, but not of 5'-fluorouracil or 5'-fluoro-2'-deoxyuridine. We conclude that MRP8 is an amphipathic anion transporter that is able to efflux cAMP and cGMP and to function as a resistance factor for commonly employed purine and pyrimidine nucleotide analogs. Topics: Adenine; Adenosine Triphosphate; Animals; Antineoplastic Agents; Antiviral Agents; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Cell Membrane; Colforsin; Coloring Agents; Cyclic AMP; Cyclic GMP; DNA, Complementary; Dose-Response Relationship, Drug; Drug Resistance; Floxuridine; Fluorouracil; Genetic Vectors; Growth Inhibitors; Immunoblotting; Inhibitory Concentration 50; Insecta; Models, Biological; Nitrosamines; Nucleotides; Organophosphonates; Swine; Tetrazolium Salts; Thiazoles; Time Factors; Transfection; Zalcitabine | 2003 |
Antiproliferative effects of NO and ANP in cultured human airway smooth muscle.
Airway smooth muscle (ASM) hypertrophy and hyperplasia are important determinants of bronchial responsiveness in asthma, and agents that interfere with these processes may prevent airway remodeling. We tested the hypothesis that activators of soluble and particulate guanylyl cyclases would inhibit human ASM cell (HASMC) proliferation. We report that the nitric oxide (NO) donors S-nitroso-N-acetylpenicillamine (SNAP; 10(-6) to 10(-4) M) and sodium nitroprusside (10(-5) to 10(-3) M) and human atrial natriuretic peptide [ANP-(1-28); 10(-8) to 10(-6) M], which activate soluble and particulate guanylyl cyclases, respectively, inhibited serum- and thrombin-induced proliferation of cultured HASMCs. The antimitogenic effect of SNAP was reversed by hemoglobin (10(-5) M), an NO scavenger, suggesting that NO donation was involved. The antiproliferative effects of SNAP and ANP-(1-28) were potentiated by the cGMP-specific phosphodiesterase zaprinast and mimicked by 8-bromo-cGMP (10(-6) to 10(-3) M), suggesting that cGMP-dependent mechanisms were involved. However, first, ANP-(1-28) produced a smaller antiproliferative effect than SNAP in contrast to their abilities to elevate cGMP, and second, rat ANP-(104-126), which binds selectively to ANP clearance receptors without elevating cGMP, had a small antiproliferative effect, suggesting that cGMP-independent mechanisms were also involved. These results provide evidence for a novel antiproliferative effect of NO and ANP in HASMCs mediated through cGMP-dependent and cGMP-independent mechanisms. Topics: Asthma; Atrial Natriuretic Factor; Blood Proteins; Cell Division; Cells, Cultured; Coloring Agents; Cyclic GMP; Diuretics; Hemoglobins; Hemostatics; Humans; Hyperplasia; Lung; Mitogens; Muscle, Smooth; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Penicillamine; Peptide Fragments; Phosphodiesterase Inhibitors; Purinones; Tetrazolium Salts; Thiazoles; Thrombin; Vasodilator Agents | 1999 |
Human small cell lung cancer cell lines express functional atrial natriuretic peptide receptors.
Small cell lung cancer cell (SCLC) lines, NCI-H82, NCI-H660, and NCI-H1284, and HeLa cells were analyzed for the presence of atrial natriuretic peptide (ANP) receptors. In these SCLC cell lines and HeLa cells, ANP A receptor mRNA was identified by Southern blot analyses of polymerase chain reaction products and RNase protection assays using poly(A)(+)-selected RNA. Saturable binding assays revealed that HeLa cells had 2000 to 5000 high affinity atrial natriuretic peptide receptors per cell with a dissociation constant of 140 pM. In the SCLC cell lines, the binding was saturable but too low to accurately estimate the number of binding sites. After addition of human ANP, radioimmunoassays revealed accumulation of cyclic GMP in SCLC cells as well as HeLa cells in a dose-dependent fashion. The half-maximal stimulation concentration of cyclic GMP accumulation in HeLa and these SCLC cell lines was approximately 2 nM. Tetrazolyl blue assays and tritiated thymidine incorporation did not show any remarkable growth inhibition or growth stimulation of SCLC cell lines after addition of human ANP up to 3.3 microM, more than 1000-fold greater than the half-maximal stimulation concentration of cyclic GMP accumulation. Our results indicate that human SCLC cells express functional ANP receptors but ANP addition produced no detectable change in their growth pattern. Topics: Atrial Natriuretic Factor; Base Sequence; Blotting, Southern; Carcinoma, Small Cell; Cell Division; Cyclic GMP; HeLa Cells; Humans; Iodine Radioisotopes; Lung Neoplasms; Molecular Sequence Data; Polymerase Chain Reaction; Radioimmunoassay; Receptors, Atrial Natriuretic Factor; Ribonucleases; RNA, Messenger; Stimulation, Chemical; Tetrazolium Salts; Thiazoles; Thymidine; Tritium; Tumor Cells, Cultured | 1993 |