cyclic-gmp and sulindac-sulfide

cyclic-gmp has been researched along with sulindac-sulfide* in 4 studies

Other Studies

4 other study(ies) available for cyclic-gmp and sulindac-sulfide

ArticleYear
Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling.
    Molecular cancer therapeutics, 2013, Volume: 12, Issue:9

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity for colorectal and other cancers, but toxicity from COX inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not require COX inhibition, although the underlying mechanism is poorly understood. Here, we report that the NSAID sulindac sulfide inhibits cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP-dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. Sulindac sulfide did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors tadalafil and sildenafil also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which sulindac sulfide and the cGMP/PKG pathway inhibits colon tumor cell growth involves the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin T-cell factor transcriptional activity, leading to downregulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP-degrading isozymes.

    Topics: Antineoplastic Agents; Apoptosis; Caco-2 Cells; Carbolines; Cell Line; Cell Proliferation; Colonic Neoplasms; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclic Nucleotide Phosphodiesterases, Type 5; Cyclin D1; HCT116 Cells; HT29 Cells; Humans; Inhibitor of Apoptosis Proteins; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Sildenafil Citrate; Sulfones; Sulindac; Survivin; Tadalafil; Wnt Signaling Pathway

2013
Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin-mediated transcription in human breast tumor cells.
    Cancer prevention research (Philadelphia, Pa.), 2011, Volume: 4, Issue:8

    Nonsteroidal anti-inflammatory drugs (NSAID) such as sulindac sulfide (SS) display promising antineoplastic properties, but toxicities resulting from COX inhibition limit their clinical use. Although COX inhibition is responsible for the anti-inflammatory activity of SS, recent studies suggest that phosphodiesterase (PDE) 5 inhibition and activation of cyclic guanosine monophosphate (cGMP) signaling are closely associated with its ability to induce apoptosis of tumor cells. However, the underlying mechanisms responsible for apoptosis induction, factors that influence sensitivity of tumor cells to SS, and the importance of PDE5 for breast tumor cell growth have not been established. Here we show that SS can induce apoptosis of breast tumor cells, which predominantly rely on PDE5 for cGMP hydrolysis but not normal mammary epithelial cells, which rely on PDE isozymes other than PDE5 for cGMP hydrolysis. Inhibition of PDE5 and activation of protein kinase G (PKG) by SS was associated with increased β-catenin phosphorylation, decreased β-catenin mRNA and protein levels, reduced β-catenin nuclear localization, decreased T-cell factor/lymphoid enhancer factor (Tcf/Lef) promoter activity, and decreased expression of Wnt/β-catenin-regulated proteins. Suppression of PDE5 with siRNA or known PDE5 inhibitors was sufficient to selectively induce apoptosis and attenuate β-catenin-mediated transcription in breast tumor cells with minimal effects on normal mammary epithelial cells. These findings provide evidence that SS induces apoptosis of breast tumor cells through a mechanism involving inhibition of PDE5 and attenuation of oncogenic Wnt/β-catenin-mediated transcription. We conclude that PDE5 represents a novel molecular target for the discovery of safer and more efficacious drugs for breast cancer chemoprevention.

    Topics: Apoptosis; beta Catenin; Breast Neoplasms; Cell Line, Tumor; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Female; Humans; Isoenzymes; Oncogenes; Phosphodiesterase 5 Inhibitors; Signal Transduction; Sulindac; Transcription, Genetic; Wnt Proteins

2011
Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition.
    Cancer prevention research (Philadelphia, Pa.), 2010, Volume: 3, Issue:10

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here, we show that the NSAID sulindac sulfide (SS) inhibits cyclic guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs also inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, whereas no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cyclic AMP hydrolysis, SS inhibited the cGMP-specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme-specific inhibitors evaluated, only the PDE5-selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin-mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared with normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; beta Catenin; Blotting, Western; Cell Proliferation; Colonic Neoplasms; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; HCT116 Cells; HT29 Cells; Humans; Immunohistochemistry; In Situ Nick-End Labeling; Male; Mice; Mice, Nude; Sulindac; Transcription, Genetic; Xenograft Model Antitumor Assays

2010
Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G.
    Molecular cancer therapeutics, 2009, Volume: 8, Issue:12

    Sulindac displays promising antineoplastic activity, but toxicities from cyclooxygenase inhibition limit its use for chemoprevention. Previous reports suggest that its anticancer properties may be attributed to a cyclooxygenase-independent mechanism, although alternative targets have not been well defined. Here, we show that sulindac sulfide (SS) induces apoptosis and inhibits the growth of human breast tumor cells with IC50 values of 60 to 85 micromol/L. Within the same concentration range, SS inhibited cyclic GMP (cGMP) hydrolysis in tumor cell lysates but did not affect cyclic AMP hydrolysis. SS did not induce apoptosis of normal human mammary epithelial cells (HMEC) nor did it inhibit phosphodiesterase (PDE) activity in HMEC lysates. SS increased intracellular cGMP levels and activated protein kinase G in breast tumor cells but not HMEC. The guanylyl cyclase (GC) activator, NOR-3, and cGMP PDE inhibitors, trequinsin and MY5445, displayed similar growth-inhibitory activity as SS, but the adenylyl cyclase activator, forskolin, and other PDE inhibitors had no effect. Moreover, GC activation increased the sensitivity of tumor cells to SS, whereas GC inhibition reduced sensitivity. By comparing PDE isozyme profiles in breast tumor cells with HMEC and determining the sensitivity of recombinant PDE isozymes to SS, PDE5 was found to be overexpressed in breast tumor cells and selectively inhibited by SS. The mechanism of SS binding to the catalytic domain of PDE5 was revealed by molecular modeling. These data suggest that PDE5 inhibition is responsible for the breast tumor cell growth-inhibitory and apoptosis-inducing activity of SS and may contribute to the chemopreventive properties of sulindac.

    Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Breast Neoplasms; Cell Line; Cell Line, Tumor; Cell Proliferation; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclic Nucleotide Phosphodiesterases, Type 5; Dose-Response Relationship, Drug; Enzyme Activation; Humans; Inhibitory Concentration 50; Isoenzymes; Models, Biological; Models, Molecular; Phosphodiesterase 5 Inhibitors; Protein Binding; Sulindac

2009