cyclic-gmp has been researched along with pyrimidine* in 4 studies
4 other study(ies) available for cyclic-gmp and pyrimidine
Article | Year |
---|---|
Synthesis and biological evaluation of all possible inosine-mixed cyclic dinucleotides that activate different hSTING variants.
Cyclic dinucleotides (CDNs) could activate stimulator of interferon genes (STING) protein to produce type I interferon and other pro-inflammation cytokines in mammalian cells. To explore new types of potentially efficient STING activators targeting all five major hSTING variants (WT, R232H, HAQ, AQ and R293Q), we here reported the synthesis of a total of 19 inosine-containing CDNs based on the combinations of hypoxanthine with four natural bases (A, G, C and U) and three phosphodiester linkage backbones (3'-3', 2'-3', 2'-2'). The IFN-β induction results showed that all of the 2'-3' and 2'-2' CDNs linked by inosine and purine nucleosides favored the stacking interaction with Y167 and R238 residues of hSTING protein, and several CDNs constructed by hypoxanthine and pyrimidine like c[I(2',5')U(2',5')] could also activate all five hSTING variants. The molecular dynamic simulation and the isothermal titration calorimetric (ITC) assay further demonstrated the potential of cAIMP isomers with 2'-5' phosphate to form the hydrogen binding with R232 and R238 residues of hSTING in an entropically driven manner compared to cGAMP isomers. It would be promising to exploit novel inosine-mixed CDNs as activators of hSTING variants in immune therapy. Topics: Cyclic GMP; Cytokines; Dinucleoside Phosphates; Drug Design; Humans; Hypoxanthine; Inosine; Isomerism; Membrane Proteins; Molecular Docking Simulation; Protein Binding; Pyrimidines; Signal Transduction; Structure-Activity Relationship | 2021 |
Modulating the cyclic guanosine monophosphate substrate selectivity of the phosphodiesterase 3 inhibitors by pyridine, pyrido[2,3-d]pyrimidine derivatives and their effects upon the growth of HT-29 cancer cell line.
Analogues with the scaffolds of 3-cyano-4-alkoxyphenyl-6-bromoaryl-2-pyridone and 2-amino-3-cyano-4-alkoxyphenyl-6-bromoarylpyridine were synthesized. Cyclization of the 2-amino derivatives with formic acid and formamide gave the corresponding pyrido[2,3-d]pyrimidin-4(3H)-one and the pyrido[2,3-d]-pyrimidin-4-amine derivatives, respectively. Active phosphodiesterase 3 (PDE3) inhibitors were identified from each of the four aforementioned scaffolds. This is the first report that pyrido[2,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4-amine derivatives can inhibit PDE3. The analogues with the pyridone and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds inhibited both cAMP and cyclic guanosine monophosphate (cGMP) hydrolysis by PDE3, while the amine containing scaffolds were more selective for cGMP hydrolysis. This observation may set the base for substrate-selective pharmacological modulation of this important class of drug targets and with less side effects, particularly tachcardia. The dual inhibitors of PDE3 were more potent inhibitor towards the growth of HT-29 cancer cell lines. Topics: Binding Sites; Catalytic Domain; Cell Proliferation; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 3; Cyclization; HT29 Cells; Humans; Hydrolysis; Molecular Docking Simulation; Phosphodiesterase 3 Inhibitors; Protein Binding; Pyridines; Pyrimidines; Structure-Activity Relationship; Substrate Specificity | 2013 |
Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae.
In Vibrio cholerae, the second messenger 3',5'-cyclic diguanylic acid (c-di-GMP) regulates several cellular processes, such as formation of corrugated colony morphology, biofilm formation, motility, and virulence factor production. Both synthesis and degradation of c-di-GMP in the cell are modulated by proteins containing GGDEF and/or EAL domains, which function as a diguanylate cyclase and a phosphodiesterase, respectively. The expression of two genes, cdgC and mbaA, which encode proteins harboring both GGDEF and EAL domains is higher in the rugose phase variant of V. cholerae than in the smooth variant. In this study, we carried out gene expression analysis to determine the genes regulated by CdgC in the rugose and smooth phase variants of V. cholerae. We determined that CdgC regulates expression of genes required for V. cholerae polysaccharide synthesis and of the transcriptional regulator genes vpsR, vpsT, and hapR. CdgC also regulates expression of genes involved in extracellular protein secretion, flagellar biosynthesis, and virulence factor production. We then compared the genes regulated by CdgC and by MbaA, during both exponential and stationary phases of growth, to elucidate processes regulated by them. Identification of the regulons of CdgC and MbaA revealed that the regulons overlap, but the timing of regulation exerted by CdgC and MbaA is different, suggesting the interplay and complexity of the c-di-GMP signal transduction pathways operating in V. cholerae. Topics: Amino Acid Sequence; Bacterial Proteins; Binding Sites; Chemotaxis; Cyclic GMP; Escherichia coli Proteins; Flagella; Gene Expression Regulation, Bacterial; Oligonucleotide Array Sequence Analysis; Phosphoric Diester Hydrolases; Phosphorus-Oxygen Lyases; Polysaccharides, Bacterial; Purines; Pyrimidines; Reverse Transcriptase Polymerase Chain Reaction; Transcription, Genetic; Vibrio cholerae; Virulence Factors | 2007 |
Depletion of deoxyribonucleoside triphosphate pools in tumor cells by nitric oxide.
Nitric oxide displays pro- and anti-tumor activities, prompting further studies to better understand its precise role. Nitric oxide inhibits ribonucleotide reductase (RnR), the limiting enzyme for de novo dNTP synthesis. We report here the first detailed analysis of dNTP variations induced in tumor cells by NO. NO prodrugs induced a depletion in dNTP pools and an activation of the pyrimidine salvage pathway, as did hydroxyurea, the prototypic RnR inhibitor. In the presence of dipyridamole, which blocked salvaged dNTP synthesis, depletion of dNTP pools was also observed in tumor cells cocultured with macrophages expressing the high-output iNOS activity. This effect was rapid, reversible, blocked by NO scavengers, and cGMP independent. It was quantitatively correlated to iNOS activity. In the absence of dipyridamole, NO still induced a decrease in dATP concentration in tumor cells cocultured with macrophages, whereas surprisingly, concentrations of dCTP and dTTP expanded considerably, resulting in a strong imbalance in dNTP pools. NO prodrugs did not cause such an increase in pyrimidine dNTP, suggesting that pyrimidine nucleosides were released by NO-injured macrophages. Altered dNTP levels have been reported to promote mutagenesis and apoptosis. It is suggested that abnormal changes in dNTP pools in tumors might contribute to NO-dependent toxicity. Topics: Animals; Cell Line; Cell Line, Tumor; Cells, Cultured; Cyclic GMP; Deoxycytidine; Deoxyribonucleotides; Dose-Response Relationship, Drug; Humans; Macrophages; Mice; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrogen Oxides; Prodrugs; Pyrimidines; Ribonucleotide Reductases; Spermine | 2004 |