cyclic-gmp has been researched along with prolinedithiocarbamate* in 3 studies
3 other study(ies) available for cyclic-gmp and prolinedithiocarbamate
Article | Year |
---|---|
YC-1 attenuates LPS-induced proinflammatory responses and activation of nuclear factor-kappaB in microglia.
An inflammatory response in the central nervous system mediated by the activation of microglia is a key event in the early stages of the development of neurodegenerative diseases. LPS has been reported to cause marked microglia activation. It is very important to develop drugs that can inhibit microglia activation and neuroinflammation. Here, we investigated the inhibitory effect of YC-1, a known activator of soluble guanylyl cyclase, against LPS-induced inflammatory responses in microglia.. To understand the inhibitory effects of YC-1 on LPS-induced neuroinflammation, primary cultures of rat microglia and the microglia cell line BV-2 were used. To examine the mechanism of action of YC-1, LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, iNOS, COX-2 and cytokine expression were analyzed by Griess reaction, ELISA, Western blotting and RT-PCR, respectively. The effect of YC-1 on LPS-induced activation of nuclear factor kappa B (NF-kappaB) was studied by NF-kappaB reporter assay and immunofluorocytochemistry.. YC-1 inhibited LPS-induced production of NO and PGE2 in a concentration-dependent manner. The protein and mRNA expression of iNOS and COX-2 in response to LPS application were also decreased by YC-1. In addition, YC-1 effectively reduced LPS-induced expression of the mRNA for the proinflammatory cytokines, TNF-alpha and IL-1beta. Furthermore, YC-1 inhibited LPS-induced NF-kappaB activation in microglia.. YC-1 was able to inhibit LPS-induced iNOS and COX-2 expression and NF-kappaB activation, indicating that YC-1 may be developed as an anti-inflammatory neuroprotective agent. Topics: Animals; Blotting, Western; Cell Line; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclooxygenase 2; Dinoprostone; Dose-Response Relationship, Drug; Enzyme Activators; Gene Expression; Guanylate Cyclase; Indazoles; Lipopolysaccharides; Luciferases; Microglia; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Oxadiazoles; Proline; Quinoxalines; Rats; Recombinant Fusion Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Thiocarbamates; Thionucleotides | 2007 |
Involvement of the NMDA receptor, NO-cyclic GMP and nuclear factor K-beta in an animal model of repeated trauma.
Post-traumatic stress disorder (PTSD) may be associated with shrinkage of the hippocampus, with glutamate release causally related to these events. Recent animal studies strongly implicate activation of the nitric oxide (NO)-cascade in anxiety and stress. Using an animal model of repeated trauma, the effect of stress was investigated on the hippocampal NO-cGMP signalling pathway, specifically the release of nitrogen oxides (NOx) and its modulation by NMDA receptor-, NO-, cGMP- and nuclear factor K-beta (NFK-beta)-selective drugs. Immediately after stress, rats received the glutamate NMDA receptor antagonist, memantine (MEM; 5 mg/kg i.p./d), the NO synthase inhibitor, 7-nitroindazole sodium salt (7-NINA; 20 mg/kg i.p./d), the cGMP-specific PDE inhibitor, sildenafil (SIL; 10 mg/kg i.p./d) or the NFkappa-beta antagonist, pyrollidine dithiocarbamate (PDTC; 70 mg/kg i.p./d), for 7 days. Stress significantly increased hippocampal NOx on day 7 post-stress, which was blocked by either 7-NINA or PDTC, while MEM was without effect. SIL, however, significantly augmented stress-induced NOx accumulation. Increased cGMP therefore acts as a protagonist in driving stress-related events, while both nNOS (neuronal NOS) and iNOS (inducible/immunological NOS) may represent a therapeutic target in preventing the effects of severe stress. The value of NMDA receptor antagonism, however, appears limited in this model. Topics: Animals; Cyclic GMP; Disease Models, Animal; Hippocampus; Indazoles; Male; NF-kappa B; Nitric Oxide; Piperazines; Proline; Purines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Sildenafil Citrate; Stress Disorders, Post-Traumatic; Sulfones; Thiocarbamates | 2005 |
YC-1-induced cyclooxygenase-2 expression is mediated by cGMP-dependent activations of Ras, phosphoinositide-3-OH-kinase, Akt, and nuclear factor-kappaB in human pulmonary epithelial cells.
We demonstrated previously that 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), an activator of soluble guanylate cyclase (sGC), induces cyclooxygenase-2 (COX-2) expression via cGMP- and p44/42 mitogen-activated protein kinase-dependent pathways in human pulmonary epithelial A549 cells. In this study, we explore the role of Ras, phosphoinositide-3-OH-kinase (PI3K), Akt, and transcription factor nuclear factor-kappaB (NF-kappaB) in YC-1-induced COX-2 expression in A549 cells. A Ras inhibitor (manumycin A), a PI3K inhibitor (wortmannin), an Akt inhibitor (1l-6-Hydroxymethyl-chiro-inositol2-[(R)-2-O-methyl-3-O-octadecylcarbonate]), and an NF-kappaB inhibitor [pyrrolidine dithiocarbamate (PDTC)] all reduced YC-1-induced COX-2 expression. The YC-1-induced increase in COX activity was also blocked by manumycin A, wortmannin, PDTC, and the dominant-negative mutants for Ras (RasN17), Akt (Akt DN), and IkappaBalpha (IkappaBalphaM). The YC-1-induced increase in Ras activity was inhibited by an sGC inhibitor [1H-(1,2,4)oxadiazolo[4,3-a]quinozalin-1-one (ODQ)], a protein kinase G (PKG) inhibitor [1-oxo-9.12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-I][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT-5823)], and manumycin A. YC-1-induced Akt activation was also inhibited by ODQ, KT-5823, manumycin A, and wortmannin. YC-1 caused the formation of an NF-kappaB-specific DNA-protein complex and an increase in kappaB-luciferase activity. YC-1-induced kappaB-luciferase activity was inhibited by ODQ, KT-5823, manumycin A, wortmannin, an Akt inhibitor, PDTC, RasN17, Akt DN, and IkappaBalphaM. Likewise, YC-1-induced IKKalpha/beta activation was inhibited by ODQ, KT-5823, manumycin A, wortmannin, and an Akt inhibitor. Furthermore, YC-1-induced COX-2 promoter activity was inhibited by manumycin A, RasN17, Akt DN, PDTC, and IkappaBalphaM. Taken together, these results indicate that YC-1 might activate the sGC/cGMP/PKG pathway to induce Ras and PI3K/Akt activation, which in turn initiates IKKalpha/beta and NF-kappaB activation and finally induces COX-2 expression in A549 cells. Topics: Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclooxygenase 2; Dinoprostone; Enzyme Inhibitors; Epithelial Cells; Gene Expression; Humans; I-kappa B Kinase; I-kappa B Proteins; Indazoles; Interleukin-1; Isoenzymes; Lung; Membrane Proteins; Mutation; NF-kappa B; NF-KappaB Inhibitor alpha; Phosphatidylinositol 3-Kinases; Polyenes; Polyunsaturated Alkamides; Proline; Prostaglandin-Endoperoxide Synthases; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; ras Proteins; Thiocarbamates; Transcription Factors | 2004 |