cyclic-gmp and norbinaltorphimine

cyclic-gmp has been researched along with norbinaltorphimine* in 5 studies

Other Studies

5 other study(ies) available for cyclic-gmp and norbinaltorphimine

ArticleYear
Pharmacological evaluation underlying the antinociceptive activity of two new hybrids NSAIDs tetrahydropyran derivatives.
    Fundamental & clinical pharmacology, 2020, Volume: 34, Issue:3

    The development of analgesic drugs is still a necessity due to the inefficiency of the current treatments for some pathological conditions and also due to the adverse effects produced by these drugs. The aim of this study was to deepen the pharmacological study of two new hybrids NSAIDs tetrahydropyran derivatives, regarding their antinociceptive effects on acute pain in mice. Male swiss mice were evaluated in the acetic acid-induced abdominal writhing, formalin, tail-flick, open-field, glutamate- and capsaicin-induced paw licking tests, and in vitro Cox inhibition assay, besides the acute toxicological evaluation. The compounds had an effect on the acetic acid-induced abdominal writhing, formalin (both phases), and tail-flick tests. In the study of the mechanism of action was observed reversion of the antinociceptive effect of the compounds from the previous administration of naloxone, L-NAME (L-nitro-arginine methyl ester), ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), glibenclamide, and nor-binaltorphimine, by the intrathecal and intraperitoneal routes. The prior administration of MK-801 suggests that the modulation of NMDA receptor contributes to the antinociceptive effect of compounds. In summary, hybrid compounds presented central antinociceptive effect, demonstrating participation of the NO-cGMP-K

    Topics: Adenosine Triphosphate; Analgesics; Analgesics, Opioid; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cyclic GMP; Cyclooxygenase Inhibitors; Dizocilpine Maleate; Formaldehyde; Glyburide; Humans; Male; Mice; Naloxone; Naltrexone; NG-Nitroarginine Methyl Ester; Pain; Pain Measurement; Potassium Channels; Prostaglandin-Endoperoxide Synthases; Receptors, N-Methyl-D-Aspartate; Signal Transduction

2020
Salvinorin A preserves cerebral pial artery autoregulation after forebrain ischemia via the PI3K/AKT/cGMP pathway.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 2018, Mar-15, Volume: 51, Issue:5

    This study aimed to investigate the protective effect of salvinorin A on the cerebral pial artery after forebrain ischemia and explore related mechanisms. Thirty Sprague-Dawley rats received forebrain ischemia for 10 min. The dilation responses of the cerebral pial artery to hypercapnia and hypotension were assessed in rats before and 1 h after ischemia. The ischemia reperfusion (IR) control group received DMSO (1 µL/kg) immediately after ischemia. Two different doses of salvinorin A (10 and 20 µg/kg) were administered following the onset of reperfusion. The 5th, 6th, and 7th groups received salvinorin A (20 µg/kg) and LY294002 (10 µM), L-NAME (10 μM), or norbinaltorphimine (norBIN, 1 μM) after ischemia. The levels of cGMP in the cerebrospinal fluid (CSF) were also measured. The phosphorylation of AKT (p-AKT) was measured in the cerebral cortex by western blot at 24 h post-ischemia. Cell necrosis and apoptosis were examined by hematoxylin-eosin staining (HE) and TUNEL staining, respectively. The motor function of the rats was evaluated at 1, 2, and 5 days post-ischemia. The dilation responses of the cerebral pial artery were significantly impaired after ischemia and were preserved by salvinorin A treatment. In addition, salvinorin A significantly increased the levels of cGMP and p-AKT, suppressed cell necrosis and apoptosis of the cerebral cortex and improved the motor function of the rats. These effects were abolished by LY294002, L-NAME, and norBIN. Salvinorin A preserved cerebral pial artery autoregulation in response to hypercapnia and hypotension via the PI3K/AKT/cGMP pathway.

    Topics: Animals; Brain Ischemia; Cerebral Arteries; Chromones; Cyclic GMP; Disease Models, Animal; Diterpenes, Clerodane; Male; Morpholines; Naltrexone; NG-Nitroarginine Methyl Ester; Phosphatidylinositol 3-Kinases; Pia Mater; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Signal Transduction

2018
Antinociceptive activity of a synthetic oxopyrrolidine-based compound, ASH21374, and determination of its possible mechanisms.
    Canadian journal of physiology and pharmacology, 2013, Volume: 91, Issue:12

    This study was carried out to determine the antinociceptive activity of a novel synthetic oxopyrrolidine-based compound, (2R,3R,4S)-ethyl 4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate (ASH21374), and to elucidate the involvement of the opioid, vanilloid, glutamate, and nitric oxide - cyclic guanosine monophosphate (NO/cGMP) systems in modulating the observed antinociception. ASH21374, in the doses of 2, 10, and 100 mg/kg body mass, was administered orally to mice 60 mins prior to exposure to various antinociceptive assays. From the results obtained, ASH21374 exhibited significant (P < 0.05) antinociceptive activity in the abdominal constriction, hot-plate, and formalin tests that was comparable with 100 mg/kg acetylsalicylic acid or 5 mg/kg morphine, respectively. ASH21374 also attenuated capsaicin- and glutamate-induced paw licking. Pre-treatment with 5 mg/kg naloxone significantly (P < 0.05) inhibited the activity in all assays, while pretreatment with 10 mg/kg β-funaltraxamine, 1 mg/kg naltrindole, or 1 mg/kg nor-binaltorphimine significantly (P < 0.05) reversed the activity in the abdominal constriction test. l-Arginine, N(G)-nitro-l-arginine methyl esters (l-NAME), methylene blue, and their combinations, failed to inhibit the ASH21374 antinociceptive activity. In conclusion, ASH21374 demonstrated antinociceptive activities on the peripheral and central nervous systems, mediated through the activation of opioid receptors, inhibition of the glutamatergic system, and attenuation of vanilloid-mediated nociceptive transmission. Further studies have been planned to determine the pharmacological potential of ASH21374.

    Topics: Analgesics; Analgesics, Opioid; Animals; Aspirin; Capsaicin; Cyclic GMP; Glutamic Acid; Male; Mice; Mice, Inbred BALB C; Morphine; Motor Activity; Naloxone; Naltrexone; Nitric Oxide; Pyrrolidines; Rats, Sprague-Dawley; Receptors, Opioid

2013
Study of the involvement of K+ channels in the peripheral antinociception of the kappa-opioid receptor agonist bremazocine.
    European journal of pharmacology, 2004, Jun-28, Volume: 494, Issue:2-3

    The involvement of the nitric oxide (NO)/cyclic GMP pathway in the molecular mechanisms of antinociceptive drugs like morphine has been previously shown by our group. Additionally, it is known that the desensitisation of nociceptors by K(+) channel opening should be the final target for several analgesic drugs including nitric oxide donors and exogenous micro-opioid receptor agonists. In our previous study, we demonstrated that bremazocine, a kappa-opioid receptor agonist, induces peripheral antinociception by activating nitric oxide/cyclic GMP pathway. In the current study, we assessed whether bremazocine is capable to activate K(+) channels eliciting antinociception. Bremazocine (20, 40 and 50 microg) dose-dependently reversed the hyperalgesia induced in the rat paw by local injection of carrageenan (250 microg) or prostaglandin E(2) (2 microg), measured by the paw pressure test. Using the selective kappa-opioid receptor antagonist nor-binaltorphimine (Nor-BNI, 200 microg/paw), it was confirmed that bremazocine (50 microg/paw) acts specifically on the kappa-opioid receptors present at peripheral sites. Prior treatment with the ATP-sensitive K(+) channel blockers glibenclamide (40, 80 and 160 microg) and tolbutamide (40, 80 and 160 microg) did not antagonise the antinociceptive effect of bremazocine (50 microg). The same results were obtained when we used prostaglandin E(2) (2 microg) as the hyperalgesic stimulus. The supposed participation of other types of K(+) channels was tested using the Ca(2+)-activated K(+) channel blockers dequalinium (12.5, 25 and 50 microg) and charybdotoxin (0.5, 1 and 2 microg) and different types of the non-selective K(+) channel blockers tetraethylammonium (25, 50 and 100 microg) and 4-aminopyridine (10, 25 and 50 microg). None of the K(+) channel blockers reversed the antinociceptive effect of bremazocine. On the basis of these results, we suggest that K(+) channels are not involved in the peripheral antinociceptive effect of bremazocine, although this opioid receptor agonist induces nitric oxide/cGMP pathway activation.

    Topics: 4-Aminopyridine; Analgesics; Animals; ATP-Binding Cassette Transporters; Benzomorphans; Charybdotoxin; Cyclic GMP; Dequalinium; Glyburide; Hyperalgesia; KATP Channels; Male; Naltrexone; Nitric Oxide; Peripheral Nervous System; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Inwardly Rectifying; Rats; Rats, Wistar; Receptors, Opioid, kappa; Signal Transduction; Tetraethylammonium; Tolbutamide

2004
Opioids and nitric oxide contribute to hypoxia-induced pial arterial vasodilation in newborn pigs.
    The American journal of physiology, 1995, Volume: 268, Issue:1 Pt 2

    The present study was designed to investigate the contribution of opioids and nitric oxide (NO) to hypoxia-induced pial vasodilation. Newborn pigs equipped with a closed cranial window were used to measure pial arteriolar diameter and to collect cortical periarachnoid cerebrospinal fluid (CSF) for assay of opioids and guanosine 3',5'-cyclic monophosphate (cGMP). Hypoxia-induced pial dilation was potentiated by norbinaltorphimine, 10(-6) M, a kappa-opioid antagonist (25 +/- 2 vs. 33 +/- 3%, n = 5), but was blunted by beta-funaltrexamine, 10(-8) M, a mu-opioid antagonist (28 +/- 2 vs. 19 +/- 1%, n = 5). Hypoxia-induced vasodilation was associated with increased CSF methionine enkephalin, a mu-opioid agonist (884 +/- 29 vs. 2,638 +/- 387 pg/ml, n = 5). N omega-nitro-L-arginine (L-NNA), an NO synthase inhibitor (10(-6) M), also blunted hypoxia-induced vasodilation that was further diminished by coadministration of L-NNA and beta-funaltrexamine (26 +/- 2, 14 +/- 1, and 9 +/- 1%, respectively, n = 5). Reversal of the above order of antagonist administration resulted in similar inhibition of hypoxia-induced pial dilation. Hypoxia-induced vasodilation was also associated with an increase in CSF cGMP that was attenuated by L-NNA (2.1 +/- 0.1- vs. 1.1 +/- 0.2-fold change in CSF cGMP, n = 5). Sodium nitroprusside (10(-6) M) increased CSF cGMP and methionine enkephalin concentration similar to hypoxia. These data suggest that hypoxia-induced pial arterial vasodilation, in part, is due to NO and/or cGMP-induced methionine enkephalin release as well as the direct action of NO.

    Topics: Amino Acid Oxidoreductases; Analysis of Variance; Animals; Animals, Newborn; Arginine; Arterioles; Cerebral Arteries; Cyclic GMP; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Enkephalins; Female; Hypoxia; Male; Muscle, Smooth, Vascular; Naltrexone; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nitroprusside; Receptors, Opioid, kappa; Receptors, Opioid, mu; Swine; Vasodilation

1995