cyclic-gmp has been researched along with naproxen-n-butyl-nitrate* in 2 studies
2 other study(ies) available for cyclic-gmp and naproxen-n-butyl-nitrate
Article | Year |
---|---|
A comparison of the cyclooxygenase inhibitor-NO donors (CINOD), NMI-1182 and AZD3582, using in vitro biochemical and pharmacological methods.
Cyclooxygenase (COX, EC 1.14.99.1) inhibitor-nitric oxide (NO) donor (CINOD) hybrid compounds represent an attractive alternative to NSAID and coxib therapy. This report compares two CINODs, NMI-1182 (naproxen-glyceryl dinitrate) and AZD3582 (naproxen-n-butyl nitrate), for their ability to inhibit COX-1 and -2, deliver bioavailable nitric oxide, and release naproxen, using in vitro biochemical and pharmacological methods. In human whole blood, both CINODs showed inhibition, comparable to naproxen, of both COX isozymes and slowly released naproxen. Both CINODs donated bioavailable NO, as detected by cGMP induction in the pig kidney transformed cell line, LLC-PK1, but NMI-1182 was more potent by 30-100 times than AZD3582, GTN, GDN, and ISDN and considerably faster in inducing cGMP synthesis than AZD3582. The nitrate groups of GTN, NMI-1182, and AZD3582 appeared to be bioactivated via a common pathway, since each compound desensitized LLC-PK1 cells to subsequent challenge with the other compounds. Similar cGMP induction also occurred in normal, untransformed cells (human renal proximal tubule epithelial cells and hepatocytes from man, rat, and monkey); again, NMI-1182 was superior to AZD3582. NMI-1182 was also the more metabolically labile compound, releasing more absolute nitrate and nitrite (total NO(x)) in human stomach (in which NO is salutary) and liver S9 homogenates. Naproxen was also more rapidly freed from NMI-1182 than AZD3582 in human stomach, although liver S9 hydrolyzed both CINODs with similar rates. These in vitro tests revealed that NMI-1182 may be a better CINOD than AZD3582 because of its superior NO donating and naproxen liberating properties. Topics: Cyclic GMP; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Humans; Liver; Naphthalenes; Naproxen; Nitric Oxide; Nitric Oxide Donors | 2005 |
A common pathway of nitric oxide release from AZD3582 and glyceryl trinitrate.
4-(Nitrooxy)-butyl-(S)-2-(6-methoxy-2-naphthyl)-propanoate (AZD3582) is a cyclooxygenase (COX)-inhibiting nitric oxide donator (CINOD). It donates nitric oxide (NO) in biological systems through as yet unidentified mechanisms. cGMP, a marker of intracellularly generated NO, was increased up to 27-fold over basal levels by AZD3582 (1-30microM) in LLC-PK1 kidney epithelial cells. A 5h pretreatment with glyceryl tinitrate (GTN, 0.1-1microM) attenuated the cGMP response to a subsequent challenge with AZD3582 or GTN. Similarly, AZD3582 (10-30microM) pretreatment reduced the increase in cGMP on subsequent incubation with AZD3582 or GTN. In contrast, cGMP stimulation by SIN-1, which releases NO independently of enzymatic catalysis, remained unimpaired in cells pretreated with GTN or AZD3582. Our results demonstrate that AZD3582 decreases the sensitivity of the guanylyl cyclase/cGMP system to GTN and vice versa. This suggests that bioactivation pathways for organic nitrates, which involve enzymatic catalysis, may be responsible for NO donation from AZD3582. Topics: Animals; Cyclic GMP; Cyclooxygenase Inhibitors; LLC-PK1 Cells; Molsidomine; Naphthalenes; Naproxen; Nitric Oxide; Nitric Oxide Donors; Nitroglycerin; Swine | 2004 |