cyclic-gmp and naltrindole

cyclic-gmp has been researched along with naltrindole* in 2 studies

Other Studies

2 other study(ies) available for cyclic-gmp and naltrindole

ArticleYear
Antinociceptive activity of a synthetic oxopyrrolidine-based compound, ASH21374, and determination of its possible mechanisms.
    Canadian journal of physiology and pharmacology, 2013, Volume: 91, Issue:12

    This study was carried out to determine the antinociceptive activity of a novel synthetic oxopyrrolidine-based compound, (2R,3R,4S)-ethyl 4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate (ASH21374), and to elucidate the involvement of the opioid, vanilloid, glutamate, and nitric oxide - cyclic guanosine monophosphate (NO/cGMP) systems in modulating the observed antinociception. ASH21374, in the doses of 2, 10, and 100 mg/kg body mass, was administered orally to mice 60 mins prior to exposure to various antinociceptive assays. From the results obtained, ASH21374 exhibited significant (P < 0.05) antinociceptive activity in the abdominal constriction, hot-plate, and formalin tests that was comparable with 100 mg/kg acetylsalicylic acid or 5 mg/kg morphine, respectively. ASH21374 also attenuated capsaicin- and glutamate-induced paw licking. Pre-treatment with 5 mg/kg naloxone significantly (P < 0.05) inhibited the activity in all assays, while pretreatment with 10 mg/kg β-funaltraxamine, 1 mg/kg naltrindole, or 1 mg/kg nor-binaltorphimine significantly (P < 0.05) reversed the activity in the abdominal constriction test. l-Arginine, N(G)-nitro-l-arginine methyl esters (l-NAME), methylene blue, and their combinations, failed to inhibit the ASH21374 antinociceptive activity. In conclusion, ASH21374 demonstrated antinociceptive activities on the peripheral and central nervous systems, mediated through the activation of opioid receptors, inhibition of the glutamatergic system, and attenuation of vanilloid-mediated nociceptive transmission. Further studies have been planned to determine the pharmacological potential of ASH21374.

    Topics: Analgesics; Analgesics, Opioid; Animals; Aspirin; Capsaicin; Cyclic GMP; Glutamic Acid; Male; Mice; Mice, Inbred BALB C; Morphine; Motor Activity; Naloxone; Naltrexone; Nitric Oxide; Pyrrolidines; Rats, Sprague-Dawley; Receptors, Opioid

2013
L-arginine exerts a dual role in nociceptive processing in the brain: involvement of the kyotorphin-Met-enkephalin pathway and NO-cyclic GMP pathway.
    British journal of pharmacology, 1993, Volume: 109, Issue:1

    1. Intracerebroventricular (i.c.v.) administration of L-arginine (L-Arg), at 10-100 micrograms per mouse, produced antinociception in mice, as assessed by the tail flick test; this antinociception was reversed by pretreatment (s.c.) with naltrindole (NTI), a delta-selective opioid antagonist, and by co-administered L-leucyl-L-arginine (Leu-Arg), a kyotorphin (endogenous Met-enkephalin releaser) receptor antagonist. 2. L-NG-nitroarginine methyl ester (L-NAME), a NO synthase inhibitor, but not D-NG-nitroarginine methyl ester, given i.c.v. at 3-10 micrograms per mouse, exhibited antinociceptive activity that was resistant to naloxone (s.c.), NTI (s.c.) and Leu-Arg (i.c.v.). 3. The L-NAME (i.c.v.)-induced antinociception was not reversed by L-Arg (i.c.v.), which was antinociceptive by itself, but was abolished by combined injection of L-Arg plus Leu-Arg (i.c.v.) or by L-Arg (i.c.v.) after NTI (s.c.). 4. Methylene blue (MB), a soluble guanylate cyclase inhibitor, at 0.1-1 microgram per mouse, produced antinociception by i.c.v. administration. The antinociception induced by MB (i.c.v.) or L-NAME (i.c.v.) was reversed by co-administered dibutyryl cyclic GMP. 5. These findings suggest that L-Arg plays a dual role in nociceptive processing in the brain, being antinociceptive via the kyotorphin-Met-enkephalin pathway and nociceptive via the NO-cyclic GMP pathway.

    Topics: Analgesics; Animals; Arginine; Brain; Cyclic GMP; Endorphins; Enkephalin, Methionine; Injections, Intraventricular; Male; Methylene Blue; Mice; Mice, Inbred Strains; Naloxone; Naltrexone; Narcotic Antagonists; Neural Pathways; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nociceptors; Pain Measurement; Spinal Cord

1993