cyclic-gmp has been researched along with homoserine-lactone* in 3 studies
1 review(s) available for cyclic-gmp and homoserine-lactone
Article | Year |
---|---|
Bacterial small-molecule signaling pathways.
Bacteria use diverse small molecules for extra- and intracellular signaling. They scan small-molecule mixtures to access information about both their extracellular environment and their intracellular physiological status, and based on this information, they continuously interpret their circumstances and react rapidly to changes. Bacteria must integrate extra- and intracellular signaling information to mount appropriate responses to changes in their environment. We review recent research into two fundamental bacterial small-molecule signaling pathways: extracellular quorum-sensing signaling and intracellular cyclic dinucleotide signaling. We suggest how these two pathways may converge to control complex processes including multicellularity, biofilm formation, and virulence. We also outline new questions that have arisen from recent studies in these fields. Topics: 4-Butyrolactone; Bacterial Physiological Phenomena; Bacterial Proteins; Biofilms; Cyclic GMP; Escherichia coli Proteins; Gene Expression Regulation, Bacterial; Genes, Bacterial; Homoserine; Lactones; Models, Biological; Oligopeptides; Phosphoric Diester Hydrolases; Phosphorus-Oxygen Lyases; Purine Nucleotides; Quinolones; Second Messenger Systems; Signal Transduction; Virulence | 2006 |
2 other study(ies) available for cyclic-gmp and homoserine-lactone
Article | Year |
---|---|
Cis-2-dodecenoic acid quorum sensing system modulates N-acyl homoserine lactone production through RpfR and cyclic di-GMP turnover in Burkholderia cenocepacia.
Burkholderia cenocepacia employs both N-Acyl homoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) quorum sensing (QS) systems in regulation of bacterial virulence. It was shown recently that disruption of BDSF synthase RpfFBc caused a reduction of AHL signal production in B. cenocepacia. However, how BDSF system influences AHL system is still not clear.. We show here that BDSF system controls AHL system through a novel signaling mechanism. Null mutation of either the BDSF synthase, RpfFBc, or the BDSF receptor, RpfR, caused a substantial down-regulation of AHL signal production in B. cenocepacia strain H111. Genetic and biochemical analyses showed that BDSF system controls AHL signal production through the transcriptional regulation of the AHL synthase gene cepI by modulating the intracellular level of second messenger cyclic di-GMP (c-di-GMP). Furthermore, we show that BDSF and AHL systems have a cumulative role in the regulation of various biological functions, including swarming motility, biofilm formation and virulence factor production, and exogenous addition of either BDSF or AHL signal molecules could only partially rescue the changed phenotypes of the double deletion mutant defective in BDSF and AHL signal production.. These results, together with our previous findings, thus depict a molecular mechanism with which BDSF regulates AHL signal production and bacterial virulence through modulating the phosphodiesterase activity of its receptor RpfR to influence the intracellular level of c-di-GMP. Topics: 4-Butyrolactone; Bacterial Proteins; Burkholderia cenocepacia; Cyclic GMP; Down-Regulation; Fatty Acids, Monounsaturated; Gene Expression Regulation, Bacterial; Quorum Sensing; Signal Transduction | 2013 |
N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean.
N-Acyl-homoserine-lactones (AHLs) are bacterial quorum-sensing signaling molecules that regulate population density. Recent evidence demonstrates their roles in plant defense responses and root development. Hydrogen peroxide (H(2)O(2)), nitric oxide (NO), and cyclic GMP (cGMP) are essential messengers that participate in various plant physiological processes, but how these messengers modulate the plant response to N-acyl-homoserine-lactone signals remains poorly understood. Here, we show that the N-3-oxo-decanoyl-homoserine-lactone (3-O-C10-HL), in contrast to its analog with an unsubstituted branch chain at the C3 position, efficiently stimulated the formation of adventitious roots and the expression of auxin-response genes in explants of mung bean (Vigna radiata) seedlings. This response was mimicked by the exogenous application of auxin, H(2)O(2), NO, or cGMP homologs but suppressed by treatment with scavengers or inhibitors of H(2)O(2), NO, or cGMP metabolism. The 3-O-C10-HL treatment enhanced auxin basipetal transport; this effect could be reversed by treatment with H(2)O(2) or NO scavengers but not by inhibitors of cGMP synthesis. Inhibiting 3-O-C10-HL-induced H(2)O(2) or NO accumulation impaired auxin- or 3-O-C10-HL-induced cGMP synthesis; however, blocking cGMP synthesis did not affect auxin- or 3-O-C10-HL-induced H(2)O(2) or NO generation. Additionally, cGMP partially rescued the inhibitory effect of H(2)O(2) or NO scavengers on 3-O-C10-HL-induced adventitious root development and auxin-response gene expression. These results suggest that 3-O-C10-HL, unlike its analog with an unmodified branch chain at the C3 position, can accelerate auxin-dependent adventitious root formation, possibly via H(2)O(2)- and NO-dependent cGMP signaling in mung bean seedlings. Topics: 4-Butyrolactone; Cyclic GMP; Fabaceae; Hydrogen Peroxide; Indoleacetic Acids; Molecular Sequence Data; Nitric Oxide; Plant Roots; Signal Transduction | 2012 |