cyclic-gmp has been researched along with diphenyleneiodonium* in 7 studies
7 other study(ies) available for cyclic-gmp and diphenyleneiodonium
Article | Year |
---|---|
Penicillamine administration reverses the inhibitory effect of hyperhomocysteinaemia on endothelium-dependent relaxation and superoxide formation in the aorta of the rabbit.
Although hyperhomocysteinaemia is a risk factor for cardiovascular disease, the mechanisms underlying this association have not been elucidated. It has been demonstrated, however, that copper augments the inhibitory effect of homocysteine on nitric oxide (NO)-mediated relaxation of the rat aorta through increased superoxide formation, which reacts with NO thereby reducing the bioavailability of NO. Since it follows that the administration of a copper chelator may blunt the pathogenic impact of hyperhomocysteinaemia, in vivo, the effect of penicillamine administration on NO-dependent relaxation and superoxide formation in the aortae of hyperhomocysteinaemic rabbits was studied. New Zealand White rabbits were fed a methionine-rich (20 g/kg chow) diet for 1 month+/-penicillamine administered orally (10 mg/kg/day) and aortic relaxation elicited with acetylcholine and superoxide measured. The role of NADPH oxidase was also studied using a range of inhibitors and western analysis of gp47(phox) (a catalytic subunit of NADPH oxidase). The methionine-rich diet markedly increased plasma total homocysteine levels. In hyperhomocysteinaemic rabbits there was a marked reduction of acetylcholine-stimulated relaxation and an increase in superoxide formation that were both inhibited with superoxide dismutase and apocynin, an NADPH oxidase inhibitor. Gp47(phox) expression was also increased in aortae from methionine fed rabbits. Penicillamine administration significantly reduced plasma total copper in methionine-fed rabbits compared to controls. Impaired acetylcholine-stimulated relaxation, increased superoxide formation and increased gp47(phox) expression in aortae from methionine-fed rabbits was reversed by penicillamine administration. These data indicate that hyperhomocysteinaemia augments the formation of arterial superoxide through an increase in NADPH oxidase expression/activity which in turn reduces NO bioavailability. Since these effects were reversed by penicillamine, these data consolidate the hypothesis that copper plays a role in mediating homocysteine-induced vasculopathy. Topics: Acetophenones; Acetylcholine; Administration, Oral; Animals; Aorta; Blotting, Western; Cyclic GMP; Dietary Supplements; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; Homocysteine; Hyperhomocysteinemia; In Vitro Techniques; Methionine; NADPH Oxidases; Nitric Oxide Donors; Nitroprusside; Onium Compounds; Penicillamine; Rabbits; Superoxides; Time Factors; Vasodilation; Vasodilator Agents | 2006 |
Effect of sildenafil citrate and a nitric oxide donating sildenafil derivative, NCX 911, on cavernosal relaxation and superoxide formation in hypercholesterolaemic rabbits.
Hypercholesterolaemia promotes erectile dysfunction through increased superoxide formation and negation of nitric oxide (NO) bioactivity in cavernosal tissue. The source of superoxide has not been clearly defined, however. Sildenafil (Viagra), the standard therapy for erectile dysfunction, may also be rendered more effective by the presence of an NO donor. One drug that intrinsically fulfils this criterion is sildenafil nitrate (NCX 911), an NO donating derivative of sildenafil. The objective of this study, therefore, was to determine the source of superoxide and its effect on erectile function in corpus cavernosum from hypercholesterolaemic rabbits and to determine whether NCX 911 confers an improvement over sildenafil citrate in this model. Hypercholesterolaemia elicited an increase in superoxide formation by rabbit cavernosal tissue and a reduction of carbachol-stimulated relaxation both of which were reversed by diphenylene iodonium chloride and apocynin (NADPH oxidase inhibitors). In response to sodium nitroprusside, hypercholesterolaemia also caused an attenuation of cavernosal relaxation which was not reversed with NADPH oxidase inhibitors. Both sildenafil citrate and NCX 911 significantly reversed impaired carbachol-stimulated relaxation and inhibited superoxide formation by cavernosal tissue from hypercholesterolaemic rabbits, NCX 911 being more potent. NCX 911 also augmented cavernosal cGMP levels, an effect blocked by the guanylyl cyclase inhibitor, 1H-{1,2,4}oxadiazolo {4,3-a}quinoxalin-1-one (ODQ). These data demonstrate that hypercholesterolaemia promotes erectile dysfunction through an augmentation of superoxide derived from NADPH oxidase in cavernosal tissue. It also indicates that NO donating sildenafil may be therapeutically more beneficial than conventional sildenafil in treating erectile dysfunction with an oxidative stress-related aetiology. Topics: Acetophenones; Allopurinol; Animals; Carbachol; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hypercholesterolemia; In Vitro Techniques; Male; Muscle Relaxation; NADPH Oxidases; NG-Nitroarginine Methyl Ester; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroprusside; Onium Compounds; Oxadiazoles; Penis; Phosphodiesterase Inhibitors; Piperazines; Purines; Quinoxalines; Rabbits; Rotenone; Sildenafil Citrate; Sulfones; Superoxides; Uncoupling Agents; Xanthine Oxidase | 2005 |
Insulin-stimulated NAD(P)H oxidase activity increases migration of cultured vascular smooth muscle cells.
We reported that insulin stimulates NAD(P)H oxidase activity but not migration of cultured rat vascular smooth muscle cells (VSMCs). Because angiotensin II (Ang II) increases NAD(P)H oxidase activity in these cells, we wished to determine whether insulin stimulates migration of Ang II-treated VSMCs by synergistically stimulating enzyme activity.. Cultured rat VSMC superoxide anion (O2-) production, cyclic GMP production, and migration were measured by lucigenin luminescence, immunoassay, and wound closure rate, respectively. Nitric oxide (NO) scavenging was measured by inhibition of NO-induced fluorescence of 4-5-diaminofluorescin.. Insulin (1 nmol/L) did not affect and Ang II (100 nmol/L) stimulated VSMC migration by 65% (P < .05), but together stimulated it by 150% (P < .05 versus Ang II) by a mechanism inhibited by the NAD(P)H oxidase inhibitors, diphenyleneiodonium (DPI) or gp91ds-tat. Insulin and Ang II stimulated O2- production by 34% and 35%, respectively (both P < .05), but together synergistically stimulated it by 143% (P < .05 versus insulin or Ang II) in a DPI or gp91ds-tat-sensitive manner. Neither insulin nor Ang II measurably affected NO scavenging, but together reduced NO availability by 46% in a DPI-sensitive manner (P < .05) and significantly inhibited NO-stimulated cyclic GMP production.. Insulin synergestically stimulates NAD(P)H oxidase activity in Ang II-treated cultured rat VSMCs causing increased migration. Topics: Aminoquinolines; Angiotensin II; Animals; Cell Movement; Cells, Cultured; Cyclic GMP; Enzyme Inhibitors; Glycoproteins; Guanylate Cyclase; Insulin; Male; Muscle, Smooth, Vascular; NADPH Oxidases; Nitric Oxide Donors; Onium Compounds; Penicillamine; Rats; Rats, Sprague-Dawley; Superoxides; Vasoconstrictor Agents | 2005 |
Cyclosporin A disrupts bradykinin signaling through superoxide.
Cyclosporin A (CsA) is used to reduce transplant rejection rates. Chronic use, however, has a destructive toxic effect on the kidney, resulting in hypertension. In this study, we investigated the effects of CsA treatment on the bradykinin/soluble guanylate cyclase signaling cascade and the involvement of superoxide in LLC-PK1 porcine kidney proximal tubule cells. Treatment with 1 micromol/L CsA for 24 hours increased basal cGMP levels by 41%, whereas CsA inhibited bradykinin-stimulated cGMP production by 26%. Western blotting showed increased expression of eNOS, but no other protein in the bradykinin/soluble guanylate cyclase (sGC) pathway was affected. Using lucigenin-dependent chemiluminescence, we found that CsA treatment significantly increased superoxide production. Production of O2- was not significantly reduced by 10 micromol/L oxypurinol or 30 micromol/L ketoconazole. However, it was inhibited by the NADPH oxidase inhibitor diphenyleneiodonium chloride (10 micromol/L) as well as the O2- scavenger superoxide dismutase (SOD) (100 U). On treatment with 50 micromol/L quercetin, 10 mmol/L N-acetyl-cysteine, both antioxidants, as well as the O2- scavenger Tiron (10 mmol/L), concomitant with 1 micromol/L CsA for 24 hours the activation of cGMP production, was restored in combination with a reduction in O2-. Incubation with 100 micromol/L menadione, a reactive oxygen generator, and 10 nmol/L bradykinin showed similar effects on the level of cGMP as with CsA. CsA treatment was found to increase nitrotyrosine levels. These findings suggest that CsA activates a NADPH oxidase that releases O2- and disrupts the bradykinin/soluble guanylate cyclase pathway, probably by binding with NO to form peroxynitrite (ONOO-). Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Acetylcysteine; Animals; Antioxidants; Blotting, Western; Bradykinin; Cyclic GMP; Cyclosporine; Enzyme Activation; Free Radical Scavengers; GTP-Binding Proteins; Guanylate Cyclase; LLC-PK1 Cells; NADPH Oxidases; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Onium Compounds; Phospholipases; Quercetin; Receptor, Bradykinin B2; Receptors, Bradykinin; Signal Transduction; Solubility; Superoxides; Swine; Tyrosine; Vitamin K 3 | 2003 |
A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits.
We have recently found evidence for impairment of nitric oxide (NO) formation and induction of oxidative stress in residents of an endemic area of chronic arsenic poisoning in Inner Mongolia, China. To investigate the underlying mechanisms responsible for these phenomena, a subchronic animal experiment was conducted using male New Zealand White rabbits. After 18 weeks of continuous exposure of rabbits to 5 mg/l of arsenate in drinking water, a significant decrease in systemic NO production occurred, as shown by significantly reduced plasma NO metabolites levels (76% of control) and a tendency towards decreased serum cGMP levels (81.4% of control). On the other hand, increased oxidative stress, as shown by significantly increased urinary hydrogen peroxide (H(2)O(2)) (120% of control), was observed in arsenate-exposed rabbits. In additional experiments measuring aortic tension, the addition of either the calcium ionophore A23187 or acethylcholine (ACh) induced a transient vasoconstriction of aortic rings prepared from arsenate-exposed rabbits, but not in those prepared from control animals. This calcium-dependent contractility action observed in aorta rings from arsenate-exposed rabbits was markedly attenuated by the superoxide (O2(.-)) scavenging enzyme Cu, Zn-SOD, as well as diphenyleneiodonium (DPI) or N(G)-nitro-L-arginine methyl ester (L-NAME), which are inhibitors for nitric oxide synthase (NOS). However, the cyclooxygenase inhibitor indomethacin or the xanthine oxidase blocker allopurinol had no effect on this vasoconstriction. These results suggest that arsenate-mediated reduction of systemic NO may be associated with the enzymatic uncoupling reaction of NOS with a subsequent enhancement of reactive oxygen species such as O2(.-), an endothelium-derived vasoconstricting factor. Furthermore, hepatic levels of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH(4)), a cofactor for NOS, were markedly reduced in arsenate-exposed rabbits to 62% of control, while no significant change occurred in cardiac L-arginine levels. These results suggest that prolonged exposure of rabbits to oral arsenate may impair the bioavailability of BH(4) in endothelial cells and, as a consequence, disrupt the balance between NO and O2(.-) produced from endothelial NOS, such that enhanced free radicals are produced at the expense of NO. Topics: Acetylcholine; Administration, Oral; Allopurinol; Animals; Aorta; Arsenates; Biopterins; Calcimycin; Cyclic GMP; Cyclooxygenase Inhibitors; Endothelium, Vascular; Enzyme Inhibitors; Hydrogen Peroxide; Indomethacin; Ionophores; Liver; Male; New Zealand; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Onium Compounds; Oxidative Stress; Rabbits; Superoxide Dismutase; Superoxides; Teratogens; Vasodilator Agents; Water; Xanthine Oxidase | 2003 |
Enantioselective inhibition of the biotransformation and pharmacological actions of isoidide dinitrate by diphenyleneiodonium sulphate.
1. We have shown previously that the D- and L- enantiomers of isoidide dinitrate (D-IIDN and L-IIDN) exhibit a potency difference for relaxation and cyclic GMP accumulation in isolated rat aorta and that this is related to preferential biotransformation of the more potent enantiomer (D-IIDN). The objective of the current study was to examine the effect of the flavoprotein inhibitor, diphenyleneiodonium sulphate (DPI), on the enantioselectivity of IIDN action. 2. In isolated rat aortic strip preparations, exposure to 0.3 microM DPI resulted in a 3.6 fold increase in the EC50 value for D-IIDN-induced relaxation, but had no effect on L-IIDN-induced relaxation. 3. Incubation of aortic strips with 2 microM D- or L-IIDN for 5 min resulted in significantly more D-isoidide mononitrate formed (5.0 +/- 1.5 pmol mg protein(-1)) than L-isoidide mononitrate (2.1 +/- 0.7 pmol mg protein(-1)) and this difference was abolished by pretreatment of tissues with 0.3 microM DPI. DPI had no effect on glutathione S-transferase (GST) activity or GSH-dependent biotransformation of D- or L-IIDN in the 105,000 x g supernatant fraction of rat aorta. 4. Consistent with both the relaxation and biotransformation data, treatment of tissues with 0.3 microM DPI significantly inhibited D-IIDN-induced cyclic GMP accumulation, but had no effect on L-IIDN-induced cyclic GMP accumulation. 5. In the intact animal, 2 mg kg(-1) DPI significantly inhibited the pharmacokinetic and haemodynamic properties of D-IIDN, but had no effect L-IIDN. 6. These data suggest that the basis for the potency difference for relaxation by the two enantiomers is preferential biotransformation of D-IIDN to NO, by an enzyme that is inhibited by DPI. Given that DPI binds to and inhibits NADPH-cytochrome P450 reductase, the data are consistent with a role for the cytochromes P450-NADPH-cytochrome P450 reductase system in this enantioselective biotransformation process. Topics: Aged; Animals; Aorta, Thoracic; Biotransformation; Blood Pressure; Cyclic GMP; Glutathione Transferase; Hemodynamics; Humans; Hypoglycemic Agents; In Vitro Techniques; Male; Muscle Relaxation; Onium Compounds; Rats; Rats, Sprague-Dawley; Stereoisomerism; Sugar Alcohols; Vasodilator Agents | 1999 |
Inhibition of the biotransformation and pharmacological actions of glyceryl trinitrate by the flavoprotein inhibitor, diphenyleneiodonium sulfate.
Recent studies suggest a role for the vascular cytochrome P450-NADPH cytochrome P450 reductase system in mediating the biotransformation of glyceryl trinitrate (GTN) to nitric oxide (or some closely related species), resulting in increased cyclic GMP accumulation and vasodilation. In this study we tested the effect of the flavoprotein inhibitor, diphenyleneiodonium sulfate (DPI) on GTN action in isolated rat aorta. Exposure of phenylephrine-contracted tissues to DPI (10 nM-0.3 microM) resulted in 3- to 10-fold increases in the EC50 values for GTN-induced relaxation in both endothelium-intact tissues and endothelium-denuded tissues, whereas the vasodilator response to sodium nitroprusside was unaffected. Consistent with the relaxation data, cyclic GMP accumulation induced by 0.3 or 2 microM GTN was inhibited by 0.3 microM DPI in both endothelium-intact and endothelium-denuded aortic strips, whereas cyclic GMP accumulation induced by 0.1 microM sodium nitroprusside was unaffected. The regioselective formation of glyceryl-1,2-dinitrate observed during the aortic biotransformation of GTN was inhibited markedly by DPI. In tissues incubated with 0.3 or 10 microM DPI for 30 min followed by washout for 60 min, the EC50 values for GTN-induced relaxation were increased 2-fold, and both GTN-induced cyclic GMP accumulation and vascular GTN biotransformation were decreased. This suggests an irreversible component to the inhibitory action of DPI. Together, these data provide evidence for the involvement of a flavoprotein (e.g., NADPH cytochrome P450 reductase) in the metabolic activation of GTN required for expression of its vasodilator activity. Topics: Animals; Aorta; Biotransformation; Cyclic GMP; Dose-Response Relationship, Drug; In Vitro Techniques; Male; NADPH-Ferrihemoprotein Reductase; Nitroglycerin; Onium Compounds; Oxazines; Rats; Rats, Sprague-Dawley; Vasodilation | 1994 |