cyclic-gmp and aluminum-fluoride

cyclic-gmp has been researched along with aluminum-fluoride* in 3 studies

Other Studies

3 other study(ies) available for cyclic-gmp and aluminum-fluoride

ArticleYear
A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor.
    The Journal of biological chemistry, 2005, Oct-21, Volume: 280, Issue:42

    The rhodopsin/transducin-coupled vertebrate vision system has served as a paradigm for G protein-coupled signaling. We have taken advantage of this system to identify new types of constitutively active, transducin-alpha (alphaT) subunits. Here we have described a novel dominant-negative mutation, made in the background of a chimera consisting of alphaT and the alpha subunit of G(i1) (designated alphaT*), which involves the substitution of a conserved arginine residue in the conformationally sensitive Switch 3 region. Changing Arg-238 to either lysine or alanine had little or no effect on the ability of alphaT* to undergo rhodopsin-stimulated GDP-GTP exchange, whereas substituting glutamic acid for arginine at this position yielded an alphaT* subunit (alphaT*(R238E)) that was incapable of undergoing rhodopsin-dependent nucleotide exchange and was unable to bind or stimulate the target/effector enzyme (cyclic GMP phosphodiesterase). Moreover, unlike the GDP-bound forms of alphaT*, alphaT*(R238A) and alphaT*(R238K), the alphaT*(R238E) mutant did not respond to aluminum fluoride (AlF4(-)), as read out by changes in Trp-207 fluorescence. However, surprisingly, we found that alphaT*(R238E) effectively blocked rhodopsin-catalyzed GDP-GTP exchange on alphaT*, as well as rhodopsin-stimulated phosphodiesterase activity. Analysis by high pressure liquid chromatography indicated that the alphaT*(R238E) mutant exists in a nucleotide-free state. Nucleotide-free forms of G alpha subunits were typically very sensitive to proteolytic degradation, but alphaT*(R238E) exhibited a resistance to trypsin-proteolysis similar to that observed with activated forms of alphaT*. Overall, these findings indicated that by mutating a single residue in Switch 3, it is possible to generate a unique type of dominant-negative G alpha subunit that can effectively block signaling by G protein-coupled receptors.

    Topics: Aluminum Compounds; Animals; Arginine; Catalysis; Cattle; Chromatography, High Pressure Liquid; Cyclic GMP; Dose-Response Relationship, Drug; Fluorides; Genes, Dominant; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; Models, Biological; Models, Molecular; Mutation; Nucleotides; Point Mutation; Protein Conformation; Recombinant Fusion Proteins; Recombinant Proteins; Retina; Rhodopsin; Signal Transduction; Spectrometry, Fluorescence; Time Factors; Transducin; Trypsin

2005
Dual role for AlF4(-)-sensitive G proteins in the function of T84 epithelial cells: transport and barrier effects.
    The American journal of physiology, 1997, Volume: 272, Issue:3 Pt 1

    T84 monolayers were studied to determine the effect of AlF4, an activator of heterotrimeric G proteins, on Cl-secretion and intestinal barrier function. Basolateral (but not apical) addition of AlF4- increased short-circuit current (I(sc)) and decreased transepithelial resistance. Preincubation with the heavy metal chelator deferoxamine showed that both effects were dependent on Al3+. The effect on I(sc) was abolished by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid or in Cl(-)-free solutions, whereas the decrease in resistance was unaffected. AlF4- also increased intracellular Ca2+, as assessed via fura 2 fluorometry. AlF4- had no effect on adenosine 3',5'-cyclic monophosphate (cAMP) or guanosine 3',5'-cyclic monophosphate (cGMP) levels in T84 cells. The effect of AlF4- on transepithelial resistance was accompanied by a decrease in cellular F-actin as well as increased transepithelial fluxes of the paracellular markers mannitol and inulin. The results indicate that AlF4(-)-sensitive G proteins regulate both epithelial secretory and barrier functions, but via different pathways. AlF4- increases Cl- secretion via a Ca2+-dependent and cAMP- and cGMP-independent mechanism in T84 cells, whereas the decrease in resistance is independent of Ca2+.

    Topics: Actins; Aluminum Compounds; Biological Transport; Calcium; Cyclic AMP; Cyclic GMP; Deferoxamine; Epithelium; Fluorides; GTP-Binding Proteins; Humans; Intestinal Mucosa; Permeability; Tumor Cells, Cultured; Type C Phospholipases

1997
Decreased sensitivity to vasoconstrictors in aortic rings after acute exposure to nitric oxide.
    The American journal of physiology, 1996, Volume: 271, Issue:1 Pt 2

    Nitric oxide (NO) has been postulated as a regulator of vascular reactivity, and the current study tested the hypothesis that NO-induced decreased sensitivity to vasoconstrictors persists following removal of NO. Endothelium-denuded segments of rat aorta were incubated 2-4 h at 37 degrees C with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). Incubation produced rightward shifts in concentration response curves for phenylephrine [i.e., half-maximum effective concentration (EC50; in microM): control = 0.016, NO = 0.14], aluminum fluoride (i.e., EC50 in mM: control = 1.66, NO = 2.29), and KCl (i.e., EC50 in mM: control = 5.9, NO = 23.9). Similar shifts were seen for two other NO donors. The SNAP-induced shift was not attenuated by a guanylyl cyclase inhibitor, LY-83583 (10 microM) and was not mimicked by 8-bromoguanosine 3',5'-cyclic monophosphate (100 microM). It was attenuated by 1,4-naphthoquinone (50 microM), an inhibitor of endogenous mono-ADP ribosyltransferases. NO incubation increased cGMP content (4.6 +/- 0.8 vs. 1.5 +/- 0.15 pmol/mg protein), an increase unaffected by 1,4-naphthoquinone (3.3 +/- 1.0 pmol/mg protein) but prevented by LY-83583 (1.6 +/- 0.36 pmol/mg protein). ADP ribosylation of three proteins was observed in membranes from HEK 293 cells: 88,66, and 38 kDa. ADP ribosylation of the 38-kDa protein was stimulated in a concentration-dependent manner by NO but was not decreased by 1,4-naphthoquinone. In conclusion, NO produces a long-lasting inhibition of vascular contractility by both a cGMP-dependent and -independent mechanism. Based on the observations of 1,4-naphthoquinone, we conclude that the cGMP-independent mechanism is not stimulation of endogenous ADP ribosylation but some other covalent modification in the pathway that mediates contraction.

    Topics: ADP Ribose Transferases; Aluminum Compounds; Aminoquinolines; Animals; Aorta; Cyclic GMP; Fluorides; Guanylate Cyclase; In Vitro Techniques; Male; Naphthoquinones; Nitric Oxide; Penicillamine; Poly(ADP-ribose) Polymerase Inhibitors; Potassium Chloride; Rats; Rats, Inbred WKY; S-Nitroso-N-Acetylpenicillamine; Time Factors; Vasoconstriction; Vasoconstrictor Agents; Vasodilator Agents

1996