cyclic-gmp and acetylleucyl-leucyl-norleucinal

cyclic-gmp has been researched along with acetylleucyl-leucyl-norleucinal* in 2 studies

Other Studies

2 other study(ies) available for cyclic-gmp and acetylleucyl-leucyl-norleucinal

ArticleYear
Involvement of NO/cGMP signaling in the apoptotic and anti-angiogenic effects of beta-lapachone on endothelial cells in vitro.
    Journal of cellular physiology, 2007, Volume: 211, Issue:2

    Neovascularization is an essential process in tumor development, it is conceivable that anti-angiogenic treatment may block tumor growth. In angiogenesis, nitric oxide (NO) is an important factor which mediates vascular endothelial cell growth and migration. beta-Lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho-[1,2-b]pyran-5,6-dione), a natural product extracted from the lapacho tree (Tabebuia avellanedae), has been demonstrated to possess anti-cancer and anti-viral effects. Whether beta-lapachone can induce endothelial cell death or has an anti-angiogenic effect is still an enigma. We investigated the in vitro effect of beta-lapachone on endothelial cells, including human vascular endothelial cell line, EAhy926, and human umbilical vascular endothelial cells (HUVEC). Our results revealed that (1) the intracellular cGMP levels and the mitochondria membrane potential (MMP) decreased, and calpain and caspases were activated, during beta-lapachone-induced endothelial cell death; (2) co-treatment with calpain inhibitors (ALLM or ALLN) or the intracellular calcium chelator, BAPTA, but not the general caspase inhibitor, zVAD-fmk, provided significant protection against apoptosis by preventing the beta-lapachone-induced MMP decrease and cytoplasmic calcium increase; (3) addition of NO downregulated the beta-lapachone-induced cGMP depletion and protected the cells from apoptosis by blocking the MMP decrease and the calcium increase; and (4) exogenous NO protects endothelial cells against the cell death induced by beta-lapachone, but not the anti-angiogenic effect. From all the data above, we demonstrated that NO can attenuate the apoptotic effect of beta-lapachone on human endothelial cells and suggest that beta-lapachone may have potential as an anti-angiogenic drug.

    Topics: Angiogenesis Inhibitors; Apoptosis; Arginine; Calcium; Calpain; Caspases; Cell Line; Cell Survival; Chelating Agents; Cyclic GMP; Dose-Response Relationship, Drug; Egtazic Acid; Endothelial Cells; Enzyme Activation; Enzyme Inhibitors; Humans; Leupeptins; Membrane Potential, Mitochondrial; Naphthoquinones; Neovascularization, Physiologic; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase Type III; Oligopeptides; Signal Transduction; Time Factors

2007
Inhibition of calpain is a component of nitric oxide-induced down-regulation of human mast cell adhesion.
    Journal of immunology (Baltimore, Md. : 1950), 2003, Jan-01, Volume: 170, Issue:1

    Nitric oxide is an important messenger that regulates mast cell activity by modifications to gene expression and intracellular pathways associated with exocytosis and adhesion. Integrin interactions with extracellular matrix components modulate an array of cell activities, including mediator production and secretion. To investigate the molecular mechanisms underlying NO regulation of mast cell function, we studied its effects on adhesion of a human mast cell line (HMC-1) to fibronectin (FN). The NO donors S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine strongly down-regulated the adhesion of HMC-1 to FN. Inhibitors of soluble guanylate cyclase and protein kinase G did not alter the response of cells to NO. A peroxynitrite scavenger did not affect modulation of adhesion by NO, nor could the effect of NO be mimicked by the peroxynitrite-producing compound 3-morpholinosydnonimine. NO donors inhibited the cysteine protease, calpain, while calpain inhibitors mimicked the effect of NO and led to a decrease in the ability of HMC-1 cells to adhere to FN. Thus, NO is an effective down-regulator of human mast cell adhesion. The mechanism for this action does not involve peroxynitrite or activation of soluble guanylate cyclase. Instead, a portion of NO-induced down-regulation of adhesion may be attributed to inhibition of the cysteine protease, calpain, an enzyme that has been associated with control of integrin activation in other cell types. The inhibition of calpain is most likely mediated via nitrosylation of its active site thiol group. Calpain may represent a novel therapeutic target for the regulation of mast cell activity in inflammatory disorders.

    Topics: Calpain; Cell Adhesion; Cyclic GMP; Dipeptides; Down-Regulation; Enzyme Activation; Enzyme Inhibitors; Fibronectins; Humans; Leupeptins; Mast Cells; Nitric Oxide; Nitric Oxide Donors; Peroxynitrous Acid; Protein Binding; S-Nitroso-N-Acetylpenicillamine; S-Nitrosoglutathione; Tumor Cells, Cultured

2003