cyclic-gmp has been researched along with 8-hydroxyguanine* in 2 studies
1 trial(s) available for cyclic-gmp and 8-hydroxyguanine
Article | Year |
---|---|
Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study.
The effect of coffee and cocoa on oxidative damage to macromolecules has been investigated in several studies, often with controversial results. This study aimed to investigate the effect of one-month consumption of different doses of coffee or cocoa-based products containing coffee on markers of DNA damage and lipid peroxidation in young healthy volunteers. Twenty-one volunteers were randomly assigned into a three-arm, crossover, randomized trial. Subjects were assigned to consume one of the three following treatments: one cup of espresso coffee/day (1C), three cups of espresso coffee/day (3C), and one cup of espresso coffee plus two cocoa-based products containing coffee (PC) twice per day for 1 month. At the end of each treatment, blood samples were collected for the analysis of endogenous and H Topics: 8-Hydroxy-2'-Deoxyguanosine; Biomarkers; Chocolate; Chromatography, High Pressure Liquid; Coffee; Comet Assay; Cross-Over Studies; Cyclic GMP; DNA Damage; Female; Guanine; Humans; Lipid Peroxidation; Male; Oxidative Stress; Tandem Mass Spectrometry; Young Adult | 2021 |
1 other study(ies) available for cyclic-gmp and 8-hydroxyguanine
Article | Year |
---|---|
Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation.
The oxidized nucleoside 8-hydroxy-2'-deoxyguanosine has been widely studied as a marker of DNA oxidation; however, data on the occurrence of other metabolites in plasma that are related to DNA damage are scarce. We have applied an improved, sensitive, robust, and reliable method, involving solid phase extraction and ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS), to the precise quantitation of seven metabolites in the plasma of 15 elite triathletes after a 2-week training program. All compounds were eluted in the first 1.6 min, with limits of detection and quantification ranging between 0.001 and 0.3 ng.mL(-1) and 0.009 and 0.6 ng.mL(-1), respectively. Four compounds were detected in plasma: guanosine-3'-5'-cyclic monophosphate, 8-hydroxyguanine, 8-hydroxy-2'-deoxyguanosine, and 8-nitroguanosine. After two weeks of training, 8-hydroxyguanine exhibited the highest increase (from 0.031 ± 0.008 nM to 0.036 ± 0.012 nM) (p < 0.05), which could be related to the enhanced activity of DNA-repairing enzymes that excise this oxidized base. Increased levels of guanosine-3'-5'-cyclic monophosphate and 8-hydroxy-2'-deoxyguanosine were also observed. In contrast, levels of 8-nitroguanosine (p < 0.05) were significantly reduced, which might be a protective measure as this compound strongly stimulates the generation of superoxide radicals, and its excess is related to pathologies such as microbial (viral) infections and other inflammatory and degenerative disorders. The results obtained indicate an induced adaptive response to the increased oxidative stress related to elite training, and point to the benefits associated with regular exercise. Topics: 8-Hydroxy-2'-Deoxyguanosine; Athletes; Cyclic GMP; Deoxyguanosine; DNA; DNA Fragmentation; Female; Guanine; Guanosine; Humans; Limit of Detection; Male; Nitro Compounds; Oxidation-Reduction; Oxidative Stress; Physical Conditioning, Human; Young Adult | 2015 |