cyclic-gmp and 7-chlorokynurenic-acid

cyclic-gmp has been researched along with 7-chlorokynurenic-acid* in 1 studies

Other Studies

1 other study(ies) available for cyclic-gmp and 7-chlorokynurenic-acid

ArticleYear
Indole-2-carboxylates, novel antagonists of the N-methyl-D-aspartate (NMDA)-associated glycine recognition sites: in vivo characterization.
    Neuropharmacology, 1993, Volume: 32, Issue:2

    Recent in vitro receptor binding studies have indicated that indole-2-carboxylates with halogen substitutions at the position 5 or 6 are potent competitive antagonists of the NMDA (N-methyl-D-aspartate)-associated strychnine-insensitive glycine receptor (Gray N. M., Dappen M. S., Cheng B. K., Cordi A. A., Biesterfeldt J. P., Hood W. F. and Monahan J. B. (1992) J. med. Chem. 34: 1283-1292; Hood W. F., Gray N. M., Dappen M. S., Watson G. B., Compton R. P., Cordi A. A., Larthorn T. H. and Monahan J. B. (1992) J. Pharmac. exp. Ther. 262: 654-660). In the present investigation, a series of indole-2-carboxylates and two putative antagonists of glycine receptor HA-966 (3-amino-l-hydroxypyrrolidin-2-one) and 7-chlorokynurenic acid were examined for their effects on cGMP responses, mediated by the NMDA receptor complex, in vivo. Both SC-49648 (6-chloro-2-carboxyindole-3-acetic acid, intracerebellar injection, i.c.b.) and HA-966 (i.c.b. or intraperitoneal, i.p.) antagonized increases in levels of cyclic GMP in the cerebellum of the mouse, induced by the intracerebellar administration of NMDA and D-serine, agonists of the NMDA and the NMDA-associated glycine recognition sites, respectively. The drugs SC-49648 and 7-chlorokynurenic acid (i.p.) did not affect cGMP responses, suggesting poor bioavailability in brain. Following direct intracerebellar injection, SC-49648 was eliminated with a half-life of 12 min from the brain. Following intraperitoneal administration, SC-50132, the 3-ethylester analog of SC-49648, was eliminated from the brain with a half-life of 35 min and was found to be metabolized to SC-49648, in vivo. Some lipophilic analogs of SC-49648, designed as its prodrugs, were minimally active as glycine antagonists, in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Brain; Cerebellum; Cyclic GMP; Harmaline; Indoleacetic Acids; Kynurenic Acid; Ligands; Male; Mice; N-Methylaspartate; Pyrrolidinones; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter

1993