cyclic-gmp and 4-nitrobenzylthioinosine

cyclic-gmp has been researched along with 4-nitrobenzylthioinosine* in 2 studies

Other Studies

2 other study(ies) available for cyclic-gmp and 4-nitrobenzylthioinosine

ArticleYear
Positive inotropic effect of the inhibition of cyclic GMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2) on guinea pig left atria in eu- and hyperthyroidism.
    General physiology and biophysics, 2003, Volume: 22, Issue:4

    The significance of PDE2 on the atrial inotropy was studied in eu- and hyperthyroidism. The contractile force was measured and negative inotropic capacity of N6-cyclopentyladenosine (CPA) was determined on left atria isolated from 8-day thyroxine- or solvent-treated guinea pigs, in the presence or absence of EHNA (adenosine deaminase and PDE2 inhibitor) or NBTI (nucleoside transporter inhibitor). EHNA was administered to inhibit PDE2, while NBTI was used to model the accumulation of endogenous adenosine. The reduction of the contractile force caused by EHNA was smaller in the thyroxine-treated atria than in the solvent-treated samples. Contrary, NBTI induced a decrease in the contractile force without significant difference between the two groups. In addition, EHNA enhanced the efficiency of CPA in thyroxine-treated atria and did not affect it in solvent-treated samples, while the response to CPA was decreased by NBTI in all atria, especially in hyperthyroidism. On the basis of greater retention of the contractile force and sustained/enhanced responsiveness to CPA in the presence of EHNA we conclude that PDE2's inhibition has a significant positive inotropic effect in guinea pig atria and this effect is proven to be augmented in hyperthyroidism.

    Topics: Adenine; Adenosine; Animals; Cardiotonic Agents; Culture Techniques; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 2; Guinea Pigs; Heart Atria; Hyperthyroidism; Male; Myocardial Contraction; Phosphoric Diester Hydrolases; Thioinosine

2003
Nitric oxide, cGMP and cAMP modulate nitrobenzylthioinosine-sensitive adenosine transport in human umbilical artery smooth muscle cells from subjects with gestational diabetes.
    Experimental physiology, 2000, Volume: 85, Issue:4

    Adenosine transport was characterized in human umbilical artery smooth muscle cells isolated from non-diabetic and diabetic pregnant subjects. Transport of adenosine was mediated by a Na+-independent transport system inhibited by nanomolar concentrations of nitrobenzylthioinosine (NBMPR) in both cell types. Diabetes increased adenosine transport, an effect that was associated with a higher maximal velocity (Vmax) for NBMPR-sensitive (es) saturable nucleoside transport (18 +/- 2 vs. 61 +/- 3 pmol (microgram protein)-1 min-1, P < 0.05) and the maximal number of binding sites (Bmax) for specific [3H]NBMPR binding (74 +/- 4 vs. 156 +/- 10 pmol (microgram protein)-1, P < 0.05), with no significant changes in the Michaelis-Menten (Km) and dissociation (Kd) constants, respectively. Adenosine transport was unaltered by inhibition of nitric oxide (NO) synthase (with 100 microM NG-nitro-L-arginine methyl ester, L-NAME) or protein synthesis (with 1 microM cycloheximide), but was increased by inhibition of adenylyl cyclase activity (with 100 microM, SQ-22536) in non-diabetic cells. Diabetes-induced adenosine transport was blocked by L-NAME and associated with an increase in L-[3H]citrulline formation from L-[3H]arginine and intracellular cGMP, but with a decrease in intracellular cAMP compared with non-diabetic cells. Expression of inducible NO synthase (iNOS) was unaltered by diabetes. Dibutyryl cGMP (dbcGMP) increased, but dibutyryl cAMP (dbcAMP) decreased, adenosine transport in non-diabetic cells. dbcGMP or the NO donor S-nitrosoacetylpenicillamine (SNAP, 100 microM) did not alter the diabetes-elevated adenosine transport. However, activation of adenylyl cyclase with forskolin (1 microM), directly or after incubation of cells with dbcAMP, inhibited adenosine transport in both cell types. Our findings provide the first evidence that adenosine transport in human umbilical artery smooth muscle cells is mediated by the NBMPR-sensitive transport system es, and that its activity is upregulated by gestational diabetes.

    Topics: Adenosine; Biological Transport; Cells, Cultured; Cyclic AMP; Cyclic GMP; Diabetes, Gestational; Female; Humans; Intracellular Membranes; Kinetics; Muscle, Smooth, Vascular; Nitric Oxide; Nucleotides, Cyclic; Pregnancy; Reference Values; Thioinosine; Umbilical Arteries

2000