cyclic-gmp and 4-amino-3-phenylbutyric-acid

cyclic-gmp has been researched along with 4-amino-3-phenylbutyric-acid* in 2 studies

Other Studies

2 other study(ies) available for cyclic-gmp and 4-amino-3-phenylbutyric-acid

ArticleYear
Inhibition of the Expression of Inducible NO Synthase by Neuroactive Amino Acid Derivatives Phenibut and Glufimet In Vitro and Ex Vivo.
    Bulletin of experimental biology and medicine, 2017, Volume: 164, Issue:2

    Topics: Animals; Animals, Outbred Strains; Anti-Inflammatory Agents; Cyclic GMP; gamma-Aminobutyric Acid; Gene Expression; Glutamic Acid; Injections, Intraperitoneal; Lipopolysaccharides; Macrophage Activation; Macrophages, Peritoneal; Male; Mice; Nitrates; Nitric Oxide; Nitric Oxide Synthase Type II; Nitrites; Primary Cell Culture

2017
Cyclic GMP protein kinase activity is reduced in thyroxine-induced hypertrophic cardiac myocytes.
    Clinical and experimental pharmacology & physiology, 2003, Volume: 30, Issue:12

    1. We tested the hypothesis that the cGMP-dependent protein kinase has major negative functional effects in cardiac myocytes and that the importance of this pathway is reduced in thyroxine (T4; 0.5 mg/kg per day for 16 days) hypertrophic myocytes. 2. Using isolated ventricular myocytes from control (n = 7) and T4-treated (n = 9) rabbit hypertrophic hearts, myocyte shortening was studied with a video edge detector. Oxygen consumption was measured using O2 electrodes. Protein phosphorylation was measured autoradiographically. 3. Data were collected following treatment with: (i) 8-(4-chlorophenylthio)guanosine-3',5'-monophosphate (PCPT; 10-7 or 10-5 mol/L); (ii) 8-bromo-cAMP (10-5 mol/L) followed by PCPT; (iii) beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-monophosphorothioate, SP-isomer (SP; 10-7 or 10-5 mol/L); or (iv) 8-bromo-cAMP (10-5 mol/L) followed by SP. 4. There were no significant differences between groups in baseline percentage shortening (Pcs; 4.9 +/- 0.2 vs 5.6 +/- 0.4% for control and T4 groups, respectively) and maximal rate of shortening (Rs; 64.8 +/- 5.9 vs 79.9 +/- 7.1 micro m/ s for control and T4 groups, respectively). Both SP and PCPT decreased Pcs (-43 vs-21% for control and T4 groups, respectively) and Rs (-36 vs-22% for control and T4 groups, respectively), but the effect was significantly reduced in T4 myocytes. 8-Bromo-cAMP similarly increased Pcs (28 vs 23% for control and T4 groups, respectively) and Rs (20 vs 19% for control and T4 groups, respectively). After 8-bromo-cAMP, SP and PCPT decreased Pcs (-34%) and Rs (-29%) less in the control group. However, the effects of these drugs were not altered in T4 myocytes (Pcs -24%; Rs -22%). Both PCPT and cAMP phosphorylated the same five protein bands. In T4 myocytes, these five bands were enhanced less. 5. We conclude that, in control ventricular myocytes, the cGMP-dependent protein kinase exerted major negative functional effects but, in T4-induced hypertrophic myocytes, the importance of this pathway was reduced and the interaction between cAMP and the cGMP protein kinase was diminished.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Body Weight; Cyclic AMP; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Drug Administration Schedule; Drug Synergism; gamma-Aminobutyric Acid; Guanosine; Heart Ventricles; Hypertrophy; Injections, Intramuscular; Myocardial Contraction; Myocytes, Cardiac; Organ Size; Oxygen Consumption; Phosphoproteins; Phosphorylation; Rabbits; Stimulation, Chemical; Thyroxine; Time Factors

2003