cyclic-gmp has been researched along with 2-2--(hydroxynitrosohydrazono)bis-ethanamine* in 43 studies
43 other study(ies) available for cyclic-gmp and 2-2--(hydroxynitrosohydrazono)bis-ethanamine
Article | Year |
---|---|
Detection of nitric oxide production in cell cultures by luciferin-luciferase chemiluminescence.
A chemiluminescent method is proposed for quantitation of NO generation in cell cultures. The method is based on activation of soluble guanylyl cyclase by NO. The product of the guanylyl cyclase reaction, pyrophosphate, is converted to ATP by ATP sulfurylase and ATP is detected in a luciferin-luciferase system. The method has been applied to the measurement of NO generated by activated murine macrophages (RAW 264.7) and bovine aortic endothelial cells. For macrophages activated by lipopolysaccharide and γ-interferon, the rate of NO production is about 100 amol/(cell·min). The rate was confirmed by the measurements of nitrite, the product of NO oxidation. For endothelial cells, the basal rate of NO generation is 5 amol/(cell·min); the rate approximately doubles upon activation by bradykinin, Ca(2+) ionophore A23187 or mechanical stress. For both types of cells the measured rate of NO generation is strongly affected by inhibitors of NO synthase. The sensitivity of the method is about 50 pM/min, allowing the registration of NO generated by 10(2)-10(4) cells. The enzyme-linked chemiluminescent method is two orders of magnitude more sensitive than fluorescent detection using 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM). Topics: Animals; Aorta; Biological Assay; Bradykinin; Cattle; Cell Line; Cyclic GMP; Diphosphates; Endothelial Cells; Firefly Luciferin; Guanosine Triphosphate; Guanylate Cyclase; Lipopolysaccharides; Luciferases; Luminescence; Luminescent Measurements; Macrophages; Mice; Nitric Oxide; Nitric Oxide Donors; Nitrites; Nitroso Compounds; Receptors, Cytoplasmic and Nuclear; Sensitivity and Specificity; Soluble Guanylyl Cyclase; Sulfate Adenylyltransferase | 2015 |
Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms.
Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases. Topics: Cells, Cultured; Culture Media, Conditioned; Cyclic GMP; Enzyme Repression; Gene Expression; Human Umbilical Vein Endothelial Cells; Humans; Matrix Metalloproteinase 9; Nitric Oxide; Nitric Oxide Donors; Nitriles; Nitroso Compounds; Phosphorylation; Protein Processing, Post-Translational; Sulfones; Tetradecanoylphorbol Acetate; Tissue Inhibitor of Metalloproteinase-1; Transcription Factor RelA; Transcription, Genetic | 2013 |
Heterogeneity in relaxation of different sized porcine coronary arteries to nitrovasodilators: role of PKG and MYPT1.
The present study was to determine the role of the type I isoform of cGMP-dependent protein kinase (PKG I) and its downstream effector myosin phosphatase target subunit 1 (MYPT1) in the responses of different sized coronary arteries to nitrovasodilators. Relaxations of isolated porcine coronary arteries were determined by isometric tension recording technique. Protein levels of PKG I and its effectors were analyzed by Western blotting. The activities of PKG I and MYPT1 were studied by analyzing phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and MYPT1, respectively. Nitroglycerin, DETA NONOate, and 8-Br-cGMP caused greater relaxations in large than in small coronary arteries. Relaxations were attenuated to a greater extent by Rp-8-Br-PET-cGMPS (a PKG inhibitor) in large vs. small arteries. The expressions of PKG I and MYPT1 in large arteries were more abundant than in small arteries. DETA NONOate stimulated phosphorylation of VASP at Ser239 and inhibited phosphorylation of MYPT1 at Thr853 to a greater extent in large than in small arteries. A suppressed phosphorylation of MYPT1 at Thr853 was caused by 8-Br-cGMP in large but not small arteries, which was inhibited by Rp-8-Br-PET-cGMPS. These results suggest that the greater responsiveness of large coronary arteries to nitrovasodilators result in part from greater activities of PKG I and MYPT1. Dysfunction in nitric oxide signaling is implicated in the vulnerability of large coronary arteries to certain disorders such as atherosclerosis and spasm. Augmentation of PKG I-MYPT1 signaling may be of therapeutic benefit for combating these events. Topics: Animals; Cell Adhesion Molecules; Coronary Vessels; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Microfilament Proteins; Models, Animal; Myosin-Light-Chain Phosphatase; Nitric Oxide; Nitroglycerin; Nitroso Compounds; Phosphoproteins; Phosphorylation; Signal Transduction; Swine; Vasodilation; Vasodilator Agents | 2012 |
Advanced polymeric matrix for valvular complications.
Poly(L-lactic acid) (PLLA) matrix systems incorporated with poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing nitric oxide (NO) donors (DETA NONOate) were developed for prevention of heart valve complications through sustained and controlled release of NO. PLLA matrices were prepared using the salt leaching method and the properties and drug release profiles were characterized. For assessment of the effects of PLLA systems on the pharmacological responses and cytotoxicity, various factors, such as calcium content, alkaline phosphatase (ALP) activity, cyclic guanosine monophosphate (cGMP) expression, intercellular adhesion molecule (ICAM-1) expression and cell viability of porcine aortic valve interstitial cells (PAVICs), were evaluated. PLLA matrices embedded with PLGA- NPs demonstrated its usefulness in alleviating the calcification rate of the VICs. The cGMP levels under osteoblastic conditions significantly increased, supporting that anticalcification activity of NO is mediated through NO-cGMP signaling pathway. The level of ICAM-1 expression in cells exposed to NO was lowered, suggesting that NO has an inhibitory activity against tissue inflammation. NO releases from PLLA matrix embedded with PLGA NPs prevented valvular calcification and inflammation without causing any cytotoxic activities. PLLA matrix system loaded with NPs containing NO donors could provide a new platform for sustained and controlled delivery of NO, significantly reducing valvular complications. Topics: Alkaline Phosphatase; Animals; Aortic Valve; Calcification, Physiologic; Cell Death; Cell Survival; Cells, Cultured; Cyclic GMP; Drug Delivery Systems; Heart Valve Prosthesis; Intercellular Adhesion Molecule-1; Lactic Acid; Nanoparticles; Nitroso Compounds; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Porosity; Sus scrofa; Tissue Scaffolds | 2012 |
Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.
Soluble guanylyl cyclase (sGC) is a heterodimer. The dimerization of the enzyme is obligatory for its function in mediating actions caused by agents that elevate cyclic guanosine monophosphate (cGMP). The present study aimed to determine whether sGC dimerization is modulated by thiol-reducing agents and whether its dimerization influences relaxations in response to nitric oxide (NO).. The dimers and monomers of sGC and cGMP-dependent protein kinase (PKG) were analysed by western blotting. The intracellular cGMP content was measured by enzyme-linked immunosorbent assay. Changes in isometric tension were determined in organ chambers. In isolated porcine coronary arteries, the protein levels of sGC dimer were decreased by the thiol reductants dithiothreitol, l-cysteine, reduced l-glutathione and tris(2-carboxyethyl) phosphine. The effect was associated with reduced cGMP elevation and attenuated relaxations in response to nitric oxide donors. The dimerization of sGC and activation of the enzyme were also decreased by dihydrolipoic acid, an endogenous thiol antioxidant. Dithiothreitol at concentrations markedly affecting the dimerization of sGC had no significant effect on the dimerization of PKG or relaxation in response to 8-Br-cGMP. Relaxation of the coronary artery in response to a NO donor was potentiated by hypoxia when sGC was partly inhibited, coincident with an increase in sGC dimer and enhanced cGMP production. These effects were prevented by dithiothreitol and tris(2-carboxyethyl) phosphine.. These results demonstrate that the dimerization of sGC is exquisitely sensitive to thiol reductants compared with that of PKG, which may provide a novel mechanism for thiol-dependent modulation of NO-mediated vasodilatation in conditions such as hypoxia. Topics: Animals; Coronary Vessels; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Dimerization; Dithiothreitol; Female; Guanylate Cyclase; Hypoxia; In Vitro Techniques; Male; Nitric Oxide; Nitroso Compounds; Protein Structure, Quaternary; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Sulfhydryl Reagents; Sus scrofa; Vasodilation | 2011 |
Characterization of nitric oxide-releasing microparticles for the mucosal delivery.
For the treatment of female sexual arousal disorder (FSAD), we developed microparticles made of PLGA containing nitric oxide (NO) donor (DETA NONOate) to efficiently deliver NO to vaginal mucosa. The NO-releasing microparticles were prepared by various emulsion methods. SEM and DSC studies were performed to examine the microparticles. The release studies were conducted under various conditions to optimize the loading dose in the microparticles. NO diffusivity through vaginal epithelial cells was evaluated and pharmacological activity of NO-releasing microparticles was examined by assessment of intracellular cGMP level in vaginal cells. Through the modified double emulsion solvent evaporation method (w/o/w(a)), the acid labile DETA NONOate was stabilized during the fabrication process and homogenous morphology and high entrapment efficiency were achieved. DETA NONOate was protected under the acidic conditions of the vagina and NO was released from the microparticles in a controlled manner. A significant amount of NO produced from DETA NONOate penetrated through the vaginal epithelial cells. The intracellular cGMP level increased with the treatment of NO-releasing microparticles in vaginal cells. These findings suggest that NO-releasing microparticles could improve the vaginal blood perfusion and open up the possibilities of novel treatment of FSAD. Topics: Biocompatible Materials; Cell Line; Cyclic GMP; Dose-Response Relationship, Drug; Drug Carriers; Female; Humans; Hydrogen-Ion Concentration; Lactic Acid; Molecular Structure; Mucous Membrane; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Sexual Dysfunction, Physiological; Surface Properties; Temperature; Vagina | 2010 |
Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5.
To investigate nitric oxide (NO)-mediated changes in expression of cyclic nucleotide degrading phosphodiesterases 2A (PDE2A), PDE3B, and PDE5A in human endothelial cells.. Nitric oxide induces production of cyclic guanosine monophosphate (cGMP), which along with cyclic adenosine monophosphate (cAMP) is degraded by PDEs. NO donors and selective inhibitors of PDE3 and PDE5 induce migraine-like headache and play a role in endothelial dysfunction during stroke. The current study investigates possible NO modulation of cGMP-related PDEs relevant to headache induction in a cell line containing such PDEs.. Real time polymerase chain reaction and Western blots were used to show expression of PDE2A, PDE3B, and PDE5A in a stable cell line of human brain microvascular endothelial cells. Effects of NO on PDE expression were analyzed at specific time intervals after continued DETA NONOate administration.. This study shows the expression of PDE2A, PDE3B, and PDE5A mRNA and PDE3B and PDE5A protein in human cerebral endothelial cells. Long-term DETA NONOate administration induced an immediate mRNA up-regulation of PDE5A (1.9-fold, 0.5 hour), an early peak of PDE2A (1.4-fold, 1 and 2 hours) and later up-regulation of both PDE3B (1.6-fold, 4 hours) and PDE2A (1.7-fold, 8 hours and 1.2-fold after 24 hours). Such changes were, however, not translated into significant changes in protein expression indicating few, if any, functional effects.. Long-term NO stimulation modulated PDE3 and PDE5 mRNA expression in endothelial cells. However, PDE3 and PDE5 protein levels were unaffected by NO. The presence of PDE3 or PDE5 in endothelial cells indicates that selective inhibitors may have functional effects in such cells. A complex interaction of cGMP and cAMP in response to NO administration may take place if the mRNA translates into active protein. Whether or not this plays a role in the headache mechanisms remains to be investigated. Topics: Blotting, Western; Cell Line; Cerebral Arteries; Cyclic AMP; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 2; Cyclic Nucleotide Phosphodiesterases, Type 3; Cyclic Nucleotide Phosphodiesterases, Type 5; Endothelial Cells; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Headache; Humans; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Phosphoric Diester Hydrolases; Protein Biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Up-Regulation | 2010 |
PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling.
Postsynaptic density 95 (PSD-95) is an important regulator of synaptic structure and plasticity. However, its contribution to synapse formation and organization remains unclear. Using a combined electron microscopic, genetic, and pharmacological approach, we uncover a new mechanism through which PSD-95 regulates synaptogenesis. We find that PSD-95 overexpression affected spine morphology but also promoted the formation of multiinnervated spines (MISs) contacted by up to seven presynaptic terminals. The formation of multiple contacts was specifically prevented by deletion of the PDZ(2) domain of PSD-95, which interacts with nitric oxide (NO) synthase (NOS). Similarly, PSD-95 overexpression combined with small interfering RNA-mediated down-regulation or the pharmacological blockade of NOS prevented axon differentiation into varicosities and multisynapse formation. Conversely, treatment of hippocampal slices with an NO donor or cyclic guanosine monophosphate analogue induced MISs. NOS blockade also reduced spine and synapse density in developing hippocampal cultures. These results indicate that the postsynaptic site, through an NOS-PSD-95 interaction and NO signaling, promotes synapse formation with nearby axons. Topics: Animals; Cyclic GMP; Dendritic Spines; Disks Large Homolog 4 Protein; Intracellular Signaling Peptides and Proteins; Membrane Proteins; Mice; NIH 3T3 Cells; Nitric Oxide; Nitric Oxide Synthase Type I; Nitroso Compounds; Organogenesis; Protein Binding; Pyramidal Cells; Rats; Signal Transduction; Synapses; Transfection | 2008 |
Regulation of endothelial nitric oxide synthase: involvement of protein kinase G 1 beta, serine 116 phosphorylation and lipid structures.
1. Endothelial nitric oxide synthase (NOS3) is important for vascular homeostasis. The role of protein kinase G (PKG) in regulation of NOS3 activity was studied in primary cultures of newborn lamb lung microvascular endothelial cells (LMVEC). 2. We determined the presence of PKG in fetal and neonatal LMVEC as well as subcellular localization of PKG isoforms in the neonatal cells by fluorescence immunohistochemistry. We used diaminofluorescein (DAF) fluorophore to measure nitric oxide (NO) production from neonatal LMVEC. We confirmed that NO measured was from constitutive NOS3 by inhibiting it with NOS inhibitors. 3. To identify a role for PKG in basal NO production, we measured NO release from LMVEC cells using 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM; 0.5-0.8 micromol/L) with and without prior stimulation with the PKG activator 8-bromo-cGMP (8-Br-cGMP; 0.3 and 3 micromol/L) or prior PKG inhibition with beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothionate (BPC; 0.3 and 3 micromol/L). With the same drugs, we determined the role of PKG on cellular expression of NOS3 and serine 116 phosphorylated NOS (pSer116-NOS) by qualitative and quantitative immunofluorescence assays, as well as western blotting. 4. Because PKG 1 beta was distributed throughout the cytosol in a punctate expression, we used 2 mmol/L cyclodextrin, a cholesterol extractor, to determine a role for lipid vesicles in PKG regulation of NO production. 5. Protein kinase G 1 beta gave a punctate appearance, indicating its presence in intracellular vesicles. Nitric oxide production decreased by approximately 20% with 300 nmol/L and 3 micromol/L 8-Br cGMP (P < 0.05) and increased by 20.8 +/- 3.7% with 3 micromol/L BPC (P < 0.001), indicating that both stimulated and basal PKG activity has inhibitory effects on basal NOS3 function. Nitric oxide synthase immunofluorescence and immunoblot expression were decreased and pSer116-NOS immunofluorescence was increased by 800 nmol/L 8-Br-cGMP and 170 micromol/L (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate). The effect of cyclodextrin indicated that cholesterol extraction interfered with PKG inhibition of NOS. Further examination of pSer116-NOS by immunohistochemistry showed it abundant in the endoplasmic reticulum and colocalized with PKG 1 beta, especially in nuclear vesicles. 6. We conclude that endothelial PKG is involved in endogenous regulation of basal NOS3 activity with th Topics: Animals; Animals, Newborn; Blotting, Western; Cell Nucleus; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclodextrins; Cytosol; Dose-Response Relationship, Drug; Endoplasmic Reticulum; Endothelial Cells; Enzyme Activation; Enzyme Inhibitors; Fluoresceins; Fluorescent Dyes; Lung; Membrane Lipids; Microcirculation; Microscopy, Fluorescence; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase Type III; Nitroso Compounds; Organelles; Phosphorylation; Protein Kinase Inhibitors; Protein Subunits; Protein Transport; Serine; Sheep; Time Factors | 2008 |
DETANO and nitrated lipids increase chloride secretion across lung airway cells.
We investigated the cellular mechanisms by which nitric oxide (NO) increases chloride (Cl-) secretion across lung epithelial cells in vitro and in vivo. Addition of (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETANONOate [DETANO];1-1,000 microM) into apical compartments of Ussing chambers containing Calu-3 cells increased short-circuit currents (I(sc)) from 5.2 +/- 0.8 to 15.0 +/- 2.1 microA/cm(2) (X +/- 1 SE; n = 7; P < 0.001). NO generated from two nitrated lipids (nitrolinoleic and nitrooleic acids; 1-10 microM) also increased I(sc) by about 100%. Similar effects were noted across basolaterally, but not apically, permeabilized Calu-3 cells. None of these NO donors increased I(sc) in Calu-3 cells pretreated with 10 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). Scavenging of NO either prevented or reversed the increase of I(sc). These data indicate that NO stimulation of soluble guanylyl cyclase was sufficient and necessary for the increase of I(sc) via stimulation of the apical cystic fibrosis transmembrane regulator (CFTR). Both Calu-3 and alveolar type II (ATII) cells contained CFTR, as demonstrated by in vitro phosphorylation of immunoprecipitated CFTR by protein kinase (PK) A. PKGII (but not PKGI) phosphorylated CFTR immuniprecipitated from Calu-3 cells. Corresponding values in ATII cells were below the threshold of detection. Furthermore, DETANO, 8-Br-cGMP, or 8-(4-chlorophenylthio)-cGMP (up to 2 mM each) did not increase Cl- secretion across amiloride-treated ATII cells in vitro. Measurements of nasal potential differences in anesthetized mice showed that perfusion of the nares with DETANO activated glybenclamide-sensitive Cl- secretion. These findings suggest that small concentrations of NO donors may prove beneficial in stimulating Cl- secretion across airway cells without promoting alveolar edema. Topics: Animals; Cell Line; Cell Polarity; Chlorides; Cyclic GMP; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Guanylate Cyclase; Ion Transport; Linoleic Acids; Lung; Mice; Nitric Oxide; Nitric Oxide Donors; Nitro Compounds; Nitroso Compounds; Oleic Acids; Reactive Nitrogen Species; Receptors, Cytoplasmic and Nuclear; Respiratory Mucosa; Soluble Guanylyl Cyclase; Thionucleotides | 2008 |
High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation.
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity. Topics: Acetylcholine; Adaptation, Physiological; Animals; Arterioles; Blotting, Western; Coronary Vessels; Cyclic GMP; Dietary Fats; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Guanylate Cyclase; Immunohistochemistry; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Nitroprusside; Nitroso Compounds; Obesity; Rats; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Vasodilation; Vasodilator Agents | 2008 |
Nitric oxide promotes airway epithelial wound repair through enhanced activation of MMP-9.
The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9. In addition, in HBE1 cells that were stably transfected with inducible NOS (NOS2), to mimic constitutive epithelial NOS2 expression in vivo, NOS inhibition decreased epithelial wound repair and MMP-9 expression. The stimulatory effects of NO on epithelial wound repair and MMP-9 expression were dependent on cGMP-mediated pathways and were inhibited by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase. Inhibition of cGMP-dependent protein kinase (PKG) attenuated NO-mediated epithelial wound closure, but did not affect MMP-9 expression. However, pharmacologic MMP inhibition and siRNA knockdown of MMP-9 expression demonstrated the contribution of MMP-9 to NO-mediated wound closure. Overall, our results demonstrate that NOS2-derived NO contributes to airway epithelial repair by both PKG-dependent and -independent mechanisms, and involves NO-dependent expression and activation of MMP-9. Topics: Cell Movement; Cyclic GMP; Enzyme Activation; Epithelial Cells; Gelatinases; Gene Expression Regulation, Enzymologic; Humans; Matrix Metalloproteinase 9; Nitric Oxide; Nitric Oxide Synthase Type II; Nitroso Compounds; omega-N-Methylarginine; Respiratory System; RNA, Messenger; Wound Healing | 2007 |
Induction of TIMP-1 and HSP47 synthesis in primary keloid fibroblasts by exogenous nitric oxide.
The excessive accumulation of extracellular matrix is a hallmark of many fibrotic diseases, including the hypertrophic scar and keloid. Recent reports from this research team had shown that exogenous nitric oxide (NO) participates in the keloid formation; however, its role on the synthesis of fibrotic factor (TGF-beta1, TIMP-1 and HSP47) in the keloid fibroblasts (KF) remained unclear.. In this study, to better define the potential effect of exogenous NO on the expression of fibrotic factors in KF, the enhancing effect of exogenous NO, released from a NO donor, on the synthesis of fibrotic factors in KF was investigated.. The seven primary KF cultures were set up to measure the effect of exogenous NO on enhancing the expression of fibrotic factor.. Elevation of cellular cGMP levels was observed to be induced by NO or blocked by the hydrolysis activity of phosphodiesterase (PDE) by the PDE inhibitor. The elevated levels of cellular cGMP were noted to enhance the expression of TIMP-1 and HSP47 in KF. Exogenous NO was found to significantly accelerate the production of TIMP-1 and HSP47 in the seven primary KFs with a corresponding increase in the production of TGF-beta1.. The results have led to a conclusion, that is: the excess collagen formations in the keloid lesion may be attributed to the NO/cGMP signal pathway by initiating a rapid increase in the expression of TGF-beta1, TIMP-1 and HSP47 in the KF cells. Topics: Adult; Aged; Cells, Cultured; Cyclic GMP; Dose-Response Relationship, Drug; Female; Fibroblasts; HSP47 Heat-Shock Proteins; Humans; Keloid; Male; Middle Aged; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Recombinant Proteins; Signal Transduction; Smad2 Protein; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta1 | 2007 |
Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway.
Nitric oxide (NO) in nanomolar (nmol/L) concentrations is consistently detected in tumor microenvironment and has been found to promote tumorigenesis. The mechanism by which NO enhances tumor progression is largely unknown. In this study, we investigated the possible mechanisms and identified cellular targets by which NO increases proliferation of human breast cancer cell lines MDA-MB-231 and MCF-7. DETA-NONOate, a long acting NO donor, with a half-life of 20 h, was used. We found that NO (nmol/L) dramatically increased total protein synthesis in MDA-MB-231 and MCF-7 and also increased cell proliferation. NO specifically increased the translation of cyclin D1 and ornithine decarboxylase (ODC) without altering their mRNA levels or half-lives. Critical components in the translational machinery, such as phosphorylated mammalian target of rapamycin (mTOR) and its downstream targets, phosphorylated eukaryotic translation initiation factor and p70 S6 kinase, were up-regulated following NO treatment, and inhibition of mTOR with rapamycin attenuated NO induced increase of cyclin D1 and ODC. Activation of translational machinery was mediated by NO-induced up-regulation of the Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase/ERK (Raf/MEK/ERK) and phosphatidylinositol 3-kinase (PI-3 kinase)/Akt signaling pathways. Up-regulation of the Raf/MEK/ERK and PI-3 kinase/Akt pathways by NO was found to be mediated by activation of Ras, which was cyclic guanosine 3',5'-monophosphate independent. Furthermore, inactivation of Ras by farnesyl transferase inhibitor or K-Ras small interfering RNA attenuated NO-induced increase in proliferation signaling and cyclin D1 and ODC translation, further confirming the involvement of Ras activation during NO-induced cell proliferation. Topics: Alkyl and Aryl Transferases; Breast Neoplasms; Cell Growth Processes; Cell Line, Tumor; Cyclic GMP; Dose-Response Relationship, Drug; Eukaryotic Initiation Factor-4E; Humans; MAP Kinase Signaling System; Nitric Oxide; Nitroso Compounds; Phosphatidylinositol 3-Kinases; Protein Biosynthesis; Protein Kinases; Proto-Oncogene Proteins c-akt; raf Kinases; TOR Serine-Threonine Kinases | 2007 |
Inhibition of TGF-beta induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase.
Pulmonary fibroblast to myofibroblast conversion is a pathophysiological feature of idiopathic pulmonary fibrosis and COPD. This conversion is induced by transforming growth factor (TGF)-beta derived from epithelial cells as well as activated macrophages that have infiltrated the lung. Preventing this conversion might be a favourable therapeutic approach. Within this study we examined the activity of different members of the phosphodiesterase (PDE) family in primary human lung fibroblasts and various lung fibroblast cell lines both before and after TGF-beta induced differentiation to myofibroblasts as reflected by the expression of alpha-smooth muscle actin. We showed that the predominant PDE activities in lung fibroblasts are attributed to PDE5, PDE1 and to a smaller extent to PDE4. cyclic GMP (cGMP)-hydrolyzing activity declines by about half after differentiation to myofibroblasts in all pulmonary fibroblasts investigated, which is accompanied by a down-regulation of PDE5 protein. Lung fibroblast to myofibroblast differentiation is blocked by treatment with the PDE4 inhibitor piclamilast alone, depending on the TGF-beta concentration applied, and in combination with prostaglandin E(2) (PGE(2)) in a synergistic manner. Despite the high PDE5 activity the PDE5 inhibitor sildenafil by itself as well as in combination with brain natriuretic peptide or the nitric oxide-donor DETA-NONOate shows no inhibiting effects. However, combining sildenafil with the guanylyl cyclase (GC) activator BAY58-2667 and ODQ (which sensitizes GC for activation by BAY58-2667) suppressed TGF-beta induced differentiation. In summary, our data indicate that drugs interfering with the cyclic AMP (cAMP)-as well as with the NO-cGMP-pathway offer the therapeutic opportunity to prevent the differentiation of pulmonary fibroblasts to myofibroblasts in lung fibrosis. Topics: Actins; Benzamides; Benzoates; Blotting, Western; Cell Differentiation; Cells, Cultured; Cyclic GMP; Dinoprostone; Drug Synergism; Enzyme Activators; Fibroblasts; Fibrosis; Guanylate Cyclase; Humans; Immunohistochemistry; Isoenzymes; Lung; Myocytes, Smooth Muscle; Natriuretic Peptide, Brain; Nitric Oxide Donors; Nitroso Compounds; Oxadiazoles; Phosphodiesterase Inhibitors; Piperazines; Purines; Pyridines; Quinoxalines; Receptors, Cytoplasmic and Nuclear; Sildenafil Citrate; Soluble Guanylyl Cyclase; Sulfones; Transforming Growth Factor beta | 2007 |
Protein kinase G regulates the basal tension and plays a major role in nitrovasodilator-induced relaxation of porcine coronary veins.
Coronary venous activity is modulated by endogenous and exogenous nitrovasodilators. The present study was to determine the role of protein kinase G (PKG) in the regulation of the basal tension and nitrovasodilator-induced relaxation of coronary veins.. Effects of a PKG inhibitor on the basal tension and responses induced by nitroglycerin, DETA NONOate, and 8-Br-cGMP in isolated porcine coronary veins were determined. Cyclic cGMP was measured with radioimmunoassay. PKG activity was determined by measuring the incorporation of 32P from gamma-32P-ATP into the specific substrate BPDEtide.. Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, increased the basal tension of porcine coronary veins and decreased PKG activity. The increase in tension was 38% of that caused by nitro-L-arginine. Relaxation of the veins induced by nitroglycerin and DETA NONOate was accompanied with increases in cGMP content and PKG activity. These effects were largely eliminated by inhibiting soluble guanylyl cyclase with ODQ. The increase in PKG activity induced by the nitrovasodilators was abolished by Rp-8-Br-PET-cGMPS. The relaxation caused by these dilators and by 8-Br-cGMP at their EC50 was attenuated by the PKG inhibitor by 51-66%.. These results suggest that PKG is critically involved in nitric oxide-mediated regulation of the basal tension in porcine coronary veins and that it plays a primary role in relaxation induced by nitrovasodilators. Since nitric oxide plays a key role in modulating coronary venous activity, augmentation of PKG may be a therapeutic target for improving coronary blood flow. Topics: Animals; Coronary Vessels; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Nitric Oxide; Nitroglycerin; Nitroso Compounds; Organ Culture Techniques; Protein Kinase Inhibitors; Radioimmunoassay; Swine; Thionucleotides; Vasodilation; Vasodilator Agents; Veins | 2007 |
Low nitric oxide: a key factor underlying copper-deficiency teratogenicity.
Copper (Cu)-deficiency-induced teratogenicity is characterized by major cardiac, brain, and vascular anomalies; however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity and increases superoxide anions, which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu-adequate (Cu+) or Cu-deficient (Cu-) dams were cultured for 48 h in Cu+ or Cu- medium, respectively. We report that NO levels were low in conditioned medium from Cu-/Cu- embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3',5'-monophosphate (cGMP) concentrations in the Cu-/Cu- group. The altered NO levels in Cu-deficient embryos are functionally significant, as the administration of the NO donor DETA/NONOate increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling, which contributes to abnormal embryo and yolk sac development. Topics: Animals; Congenital Abnormalities; Copper; Cyclic GMP; Embryonic Development; Female; Male; Mice; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroso Compounds; Oxidative Stress; Pregnancy; Signal Transduction; Yolk Sac | 2007 |
Role of intracellular Ca2+ and calmodulin/MAP kinase kinase/extracellular signal-regulated protein kinase signalling pathway in the mitogenic and antimitogenic effect of nitric oxide in glia- and neurone-derived cell lines.
To elucidate the mechanism of cell growth regulation by nitric oxide (NO) and the role played in it by Ca2+, we studied the relationship among intracellular Ca2+ concentration ([Ca2+]i), mitogen-activated protein kinases [extracellular signal-regulated protein kinase (ERK)] and proliferation in cell lines exposed to different levels of NO. Data showed that NO released by low [(z)-1-[2-aminiethyl]-N-[2-ammonioethyl]amino]diazen-1-ium-1,2diolate (DETA/NO) concentrations (10 microm) determined a gradual, moderate elevation in [Ca2+]i (46.8 +/- 7.2% over controls) which paralleled activation of ERK and potentiation of cell division. Functionally blocking Ca2+ or inhibiting calmodulin or MAP kinase kinase activities prevented ERK activation and antagonized the mitogenic effect of NO. Experimental conditions favouring Ca2+ entry into cells led to increased [Ca2+]i (189.5 +/- 4.8%), ERK activation and cell division. NO potentiated the Ca2+ elevation (358 +/- 16.8%) and ERK activation leading to expression of p21Cip1 and inhibition of cell proliferation. Furthermore, functionally blocking Ca2+ down-regulated ERK activation and reversed the antiproliferative effect of NO. Both the mitogenic and antimitogenic responses induced by NO were mimicked by a cGMP analogue whereas they were completely antagonized by selective cGMP inhibitors. These results demonstrate for the first time that regulation of cell proliferation by low NO levels is cGMP dependent and occurs via the Ca2+/calmodulin/MAP kinase kinase/ERK pathway. In this effect the amplitude of Ca2+ signalling determines the specificity of the proliferative response to NO possibly by modulating the strength of ERK activation. In contrast to the low level, the high levels (50-300 microm) of DETA/NO negatively regulated cell proliferation via a Ca2+-independent mechanism. Topics: Animals; Calcium; Calmodulin; Cell Line, Tumor; Cell Proliferation; Cyclic GMP; Cyclin-Dependent Kinase Inhibitor p21; DNA; Extracellular Signal-Regulated MAP Kinases; Humans; Intracellular Space; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Mitosis; Neuroglia; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Rats; Signal Transduction | 2006 |
Nitric oxide reduces T lymphocyte adhesion to human brain microvessel endothelial cells via a cGMP-dependent pathway.
The entry of lymphocytes into the brain is normally limited by the blood-brain barrier, however, during inflammation prominent lymphocytic infiltration occurs. In this study, we investigated the effects of nitric oxide (NO) on the adhesion of T cells to cultured human brain microvessel endothelial cells. T cell adhesion to unstimulated or tumor necrosis factor-alpha (TNF-alpha)-treated cells was quantified by counting the number of lymphocytes bound to the monolayer by light microscopy. TNF-alpha increased T cell adhesion in a time-dependent manner. Incubation of monolayers with NO donors decreased adhesion. This effect was blocked by a guanylyl cyclase inhibitor and mimicked by a cGMP agonist, and was thus dependent on the generation of cGMP. NO did not modulate adhesion molecule expression in the endothelial cells, suggesting an action on the T cells. Pre-treatment of T cells with NO or a cGMP agonist decreased binding to recombinant endothelial adhesion molecules. These findings suggest that NO can modulate the adhesion of T cells to human brain microvessel endothelial cells via a cGMP-dependent mechanism, and may thus regulate lymphocyte traffic during central nervous system inflammation. Topics: Brain; Cell Adhesion; Cells, Cultured; Cyclic GMP; Dose-Response Relationship, Drug; E-Selectin; Endothelial Cells; Enzyme Inhibitors; Guanylate Cyclase; Humans; Intercellular Adhesion Molecule-1; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroprusside; Nitroso Compounds; Oxadiazoles; Platelet Endothelial Cell Adhesion Molecule-1; Quinoxalines; Signal Transduction; T-Lymphocytes; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1 | 2005 |
Role of cGMP-dependent protein kinase in development of tolerance to nitric oxide in pulmonary veins of newborn lambs.
Continuous exposure to nitrovasodilators and nitric oxide induces tolerance to their vasodilator effects in vascular smooth muscle. This study was done to determine the role of cGMP-dependent protein kinase (PKG) in the development of tolerance to nitric oxide. Isolated fourth-generation pulmonary veins of newborn lambs were studied. Incubation of veins for 20 h with DETA NONOate (DETA NO; a stable nitric oxide donor) significantly reduced their relaxation response to the nitric oxide donor and to beta-phenyl-1,N2-etheno-8-bromo-cGMP (8-Br-PET-cGMP, a cell-permeable cGMP analog). Incubation with DETA NO significantly reduced PKG activity and protein and mRNA levels in the vessels. These effects were prevented by 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase) and Rp-8-Br-PET-cGMPS (an inhibitor of PKG). A decrease in PKG protein and mRNA levels was also observed after continuous exposure to cGMP analogs. The PKG inhibitor abrogated these effects. The decrease in cGMP-mediated relaxation and in PKG activity caused by continuous exposure to DETA NO was not affected by KT-5720, an inhibitor of cAMP-dependent protein kinase. Prolonged exposure to 8-Br-cAMP (a cell-permeable cAMP analog) did not affect PKG protein level in the veins. These results suggest that continuous exposure to nitric oxide or cGMP downregulates PKG by a PKG-dependent mechanism. Such a negative feedback mechanism may contribute to the development of tolerance to nitric oxide in pulmonary veins of newborn lambs. Topics: Animals; Animals, Newborn; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Enzyme Activation; Feedback, Physiological; Female; Male; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Organ Culture Techniques; Pulmonary Veins; RNA, Messenger; Sheep | 2004 |
Nitric oxide decreases endothelin-1 secretion through the activation of soluble guanylate cyclase.
The use of exogenous nitric oxide (NO) has been shown to alter the regulation of other endothelially derived mediators of vascular tone, such as endothelin-1 (ET-1). However, the interaction between NO and ET-1 appears to be complex and remains incompletely understood. One of the major actions of NO is the activation of soluble guanylate cyclase (sGC) with the subsequent generation of cGMP. Therefore, we undertook this study to test the hypothesis that NO regulates ET-1 production via the activation of the sGC/cGMP pathway. The results obtained indicated that the exposure of primary cultures of 4-wk-old ovine pulmonary arterial endothelial cells (4-wk PAECs) to the long-acting NO donor DETA NONOate induced both a dose- and time-dependent decrease in secreted ET-1. This decrease in ET-1 secretion occurred in the absence of changes in endothelin-converting enzyme-1 or sGC expression but in conjunction with a decrease in prepro-ET-1 mRNA. The changes in ET-1 release were inversely proportional to the cellular cGMP content. Furthermore, the NO-independent activator of sGC, YC-1, or treatment with a cGMP analog also produced significant decreases in ET-1 secretion. Conversely, pretreatment with the sGC inhibitor ODQ blocked the NO-induced decrease in ET-1. Therefore, we conclude that exposure of 4-wk PAECs to exogenous NO decreases secreted ET-1 resulting from the activation of sGC and increased cGMP generation. Topics: Amino Acid Sequence; Animals; Ascorbic Acid; Cells, Cultured; Cyclic GMP; Endothelin-1; Endothelium, Vascular; Enzyme Activation; Guanylate Cyclase; Intracellular Membranes; Membrane Potentials; Mitochondria; Molecular Sequence Data; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Peptide Fragments; Pulmonary Artery; Sheep | 2004 |
Continuous exposure to nitric oxide enhances diazepam binding inhibitor mRNA expression in mouse cerebral cortical neurons.
Effects of sustained exposure to nitric oxide (NO) formed by long-term activation of N-methyl-D-aspartate (NMDA) receptors and liberated from a long-lasting NO generator, DETA NONOate, on diazepam binding inhibitor (DBI) and its mRNA expressions were examined using mouse cerebral cortical neurons. Long-term exposure to NMDA increased DBI mRNA expression, and NO synthase inhibitors dose-dependently inhibited this increase. DETA NONOate dose-dependently increased DBI mRNA expression when exposing the neurons to this agent for 3 days and a maximal enhancement of the expression was found at 100 microM of the NO generator. In addition, a significant increase in DBI mRNA expression was observed 1 day after the exposure to 100 microM DETA NONOate, and the maximal expression was observed 2 days after the exposure, whereas transient exposure for less than 3 h to 100 microM DETA NONOate produced no changes in the expression. DETA NONOate (100 microM)-induced increase in DBI mRNA expression was completely abolished by concomitant exposure to hemoglobin. DBI content was also dose-dependently increased by DETA NONOate after the exposure for 3 days. The inhibition of cGMP formation by 1H-[1,2,4] oxadiazolo [4,3-alpha]quinoxalin-1-one (ODQ) showed no affects on the DETA NONOate-induced expression, suggesting that the increased expression of DBI mRNA is mediated via processes independent of cGMP. These results indicate that continuous exposure of the neurons to NO is an essential factor for increasing DBI mRNA expression in the neurons. Topics: Analysis of Variance; Animals; Blotting, Northern; Cells, Cultured; Cerebellar Cortex; Cyclic GMP; Diazepam Binding Inhibitor; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Gene Expression Regulation; Hybridization, Genetic; Immunohistochemistry; L-Lactate Dehydrogenase; Mice; N-Methylaspartate; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Oxadiazoles; Phosphopyruvate Hydratase; RNA, Messenger; Time; Time Factors | 2004 |
Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier.
The endothelial cells (EC) of the microvasculature in the brain form the anatomical basis of the blood-brain barrier (BBB). In the present study, the effects of agents that modify the permeability of a well-established in vitro model of the human BBB were studied. The monolayers formed by confluent human brain microvessel endothelial cell (HBMEC) cultures are impermeable to the macromolecule tracer horseradish peroxidase (HRP) and have high electrical resistance. Exposure of HBMEC to various cytokines including TNF-alpha, IL-1beta, interferon gamma (IFN-gamma), or lipopolysaccharide (LPS) decreased transendothelial electrical resistance (TEER) mainly by increasing the permeability of the tight junctions. Primary cultures of HBMEC express endothelial nitric oxide synthase (eNOS) and produce low levels of NO. Treatment with the NO donors sodium nitroprusside (SNP) and DETA NONOate or the cGMP agonist 8-Br-cGMP significantly increased monolayer resistance. Conversely, inhibition of soluble guanylyl cyclase with ODQ rapidly decreased the resistance, and pretreatment of HBMEC with Rp-8-CPT-cGMPS, an inhibitor of cGMP-dependent protein kinase, partially prevented the 8-Br-cGMP-induced increase in resistance. Furthermore, NO donors and 8-Br-cGMP could also reverse the increased permeability of the monolayers induced by IL-1beta, IFN-gamma, and LPS. These results indicate that NO can decrease the permeability of the human BBB through a mechanism at least partly dependent on cGMP production and cGMP-dependent protein kinase activation. Topics: Blood-Brain Barrier; Capillary Permeability; Cells, Cultured; Cyclic GMP; Cytokines; Electric Impedance; Endothelial Cells; Enzyme Inhibitors; Humans; Immunohistochemistry; In Vitro Techniques; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Nitroso Compounds; Oxadiazoles; Quinoxalines; Signal Transduction | 2004 |
Effects of nitric oxide on red blood cell deformability.
In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability. Topics: Adult; Arginine; Calcium; Cell Size; Cyclic GMP; Drug Interactions; Enzyme Inhibitors; Erythrocyte Deformability; Erythrocytes; Guanylate Cyclase; Hemorheology; Humans; Hydrazines; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroprusside; Nitroso Compounds; Potassium Channel Blockers; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Stress, Mechanical; Tetraethylammonium | 2003 |
FGF-2, NGF and IGF-1, but not BDNF, utilize a nitric oxide pathway to signal neurotrophic and neuroprotective effects against alcohol toxicity in cerebellar granule cell cultures.
Neuronal death is a prominent neuropathological component of fetal alcohol syndrome (FAS). Identification of molecular agents and pathways that can ameliorate alcohol-induced cell loss offers possible therapeutic strategies for FAS and potential insight into its pathogenesis. This study investigated the effects of growth factors on cellular survival in alcohol-exposed cerebellar granule cell (CGC) cultures and examined the role of the nitric oxide (NO)-cGMP-PKG (cGMP-dependent protein kinase) pathway in the cell survival-promoting effects of these growth factors. Primary CGC cultures were exposed to 0 or 400 mg/dl ethanol, accompanied by either no growth factor or 30 ng/ml fibroblast growth factor-2 (FGF-2), nerve growth factor (NGF), insulin-like growth factor-1 (IGF-1), brain-derived neurotrophic factor (BDNF) or epidermal growth factor (EGF). Viable neurons were quantified after 1 day of exposure. Two distinct types of cell survival-promoting effects of growth factors were detectable: (1) a neurotrophic effect, in which the growth factors diminished the background death of neurons that occurred in alcohol-free cultures; and (2) a neuroprotective effect, in which the growth factors diminished alcohol-induced cell death. The various growth factors differed markedly in their patterns of cell survival promotion. While BDNF and FGF-2 exerted both a neurotrophic and a neuroprotective effect, IGF-1 had only a neurotrophic effect and did not protect against alcohol toxicity, and NGF had only a neuroprotective effect and did not diminish background cell death. EGF had neither a neurotrophic nor a neuroprotective effect. In order to determine the role of the NO-cGMP-PKG pathway in the cell survival-promoting effects mediated by growth factors, cultures were exposed to one of several pharmacological inhibitors of the pathway, including NAME, LY83583 and PKG inhibitor. The cell survival-promoting effects of FGF-2, NGF and IGF-1 were all substantially reduced by each of the pathway inhibitors. In contrast, neither the neurotrophic nor the neuroprotective effects of BDNF were altered by any of the pathway inhibitors. Thus, growth factors differ in their patterns of neurotrophic and neuroprotective effects, and they differ in their reliance on the NO-cGMP-PKG pathway. While FGF-2, NGF and IGF-1 all signal their survival-promoting effects through the NO-cGMP-PKG pathway, BDNF does not rely upon this pathway for signal transduction in CGC cultures. Topics: Aminoquinolines; Animals; Brain-Derived Neurotrophic Factor; Cells, Cultured; Cerebellum; Cyclic GMP; Ethanol; Fibroblast Growth Factor 2; Hydrazines; Insulin-Like Growth Factor I; Neurons; Neuroprotective Agents; NG-Nitroarginine Methyl Ester; Nitroso Compounds; Rats; Rats, Sprague-Dawley | 2003 |
Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat.
We investigated the effects of NO on angiogenesis and the synthesis of vascular endothelial growth factor (VEGF) in a model of focal embolic cerebral ischemia in the rat. Compared with control rats, systemic administration of an NO donor, DETANONOate, to rats 24 hours after stroke significantly enlarged vascular perimeters and increased the number of proliferated cerebral endothelial cells and the numbers of newly generated vessels in the ischemic boundary regions, as evaluated by 3-dimensional laser scanning confocal microscopy. Treatment with DETANONOate significantly increased VEGF levels in the ischemic boundary regions as measured by ELISA. A capillary-like tube formation assay was used to investigate whether DETANONOate increases angiogenesis in ischemic brain via activation of soluble guanylate cyclase. DETANONOate-induced capillary-like tube formation was completely inhibited by a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). Blocking VEGF activity by a neutralized antibody against VEGF receptor 2 significantly attenuated DETANONOate-induced capillary-like tube formation. Moreover, systemic administration of a phosphodiesterase type 5 inhibitor (Sildenafil) to rats 24 hours after stroke significantly increased angiogenesis in the ischemic boundary regions. Sildenafil and an analog of cyclic guanosine monophosphate (cGMP) also induced capillary-like tube formation. These findings suggest that exogenous NO enhances angiogenesis in ischemic brain, which is mediated by the NO/cGMP pathway. Furthermore, our data suggest that NO, in part via VEGF, may enhance angiogenesis in ischemic brain. Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Brain; Bromodeoxyuridine; Cell Division; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Endothelial Growth Factors; Endothelium, Vascular; Enzyme Inhibitors; Guanylate Cyclase; Intercellular Signaling Peptides and Proteins; Lymphokines; Male; Neovascularization, Physiologic; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Piperazines; Purines; Rats; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Sildenafil Citrate; Soluble Guanylyl Cyclase; Stroke; Sulfones; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2; Vascular Endothelial Growth Factors | 2003 |
Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR.
Dysregulation of extracellular matrix turnover is an important feature of many inflammatory processes. Rat renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin-1 beta. We demonstrate that NO does strongly destabilize MMP-9 mRNA, since different luciferase reporter gene constructs containing the MMP-9 3' untranslated region (UTR) displayed significant reduced luciferase activity in response to the presence of NO. Moreover, by use of an in vitro degradation assay we found that the cytoplasmic fractions of NO-treated cells contained a higher capacity to degrade MMP-9 transcripts than those obtained from control cells. An RNA electrophoretic mobility shift assay demonstrated that three of four putative AU-rich elements present in the 3' UTR of MMP-9 were constitutively occupied by the mRNA-stabilizing factor HuR and that the RNA binding was strongly attenuated by the presence of NO. The addition of recombinant glutathione transferase-HuR prevented the rapid decay of MMP-9 mRNA, whereas the addition of a neutralizing anti-HuR antibody caused an acceleration of MMP-9 mRNA degradation. Furthermore, the expression of HuR mRNA and protein was significantly reduced by exogenously and endogenously produced NO. These inhibitory effects were mimicked by the cGMP analog 8-bromo-cGMP and reversed by LY-83583, an inhibitor of soluble guanylyl cyclase. These results demonstrate that NO acts in a cGMP-dependent mechanism to inhibit the expression level of HuR, thereby reducing the stability of MMP-9 mRNA. Topics: 3' Untranslated Regions; Aminoquinolines; Animals; Antigens, Surface; Base Sequence; Cells, Cultured; Cyclic GMP; Cytoplasm; Dactinomycin; ELAV Proteins; ELAV-Like Protein 1; Enzyme Inhibitors; Gene Expression; Guanylate Cyclase; Interleukin-1; Kidney; Matrix Metalloproteinase 9; Molecular Mimicry; Molecular Sequence Data; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Rats; Recombinant Proteins; Repetitive Sequences, Nucleic Acid; Ribonucleoproteins; RNA Stability; RNA-Binding Proteins; RNA, Messenger | 2003 |
Reactive oxygen nitrogen species decrease cystic fibrosis transmembrane conductance regulator expression and cAMP-mediated Cl- secretion in airway epithelia.
We investigated putative mechanisms by which nitric oxide modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and function in epithelial cells. Immunoprecipitation followed by Western blotting, as well as immunocytochemical and cell surface biotinylation measurements, showed that incubation of both stably transduced (HeLa) and endogenous CFTR expressing (16HBE14o-, Calu-3, and mouse tracheal epithelial) cells with 100 microm diethylenetriamine NONOate (DETA NONOate) for 24-96 h decreased both intracellular and apical CFTR levels. Calu-3 and mouse tracheal epithelial cells, incubated with DETA NONOate but not with 100 microm 8-bromo-cGMP for 96 h, exhibited reduced cAMP-activated short circuit currents when mounted in Ussing chambers. Exposure of Calu-3 cells to nitric oxide donors resulted in the nitration of a number of proteins including CFTR. Nitration was augmented by proteasome inhibition, suggesting a role for the proteasome in the degradation of nitrated proteins. Our studies demonstrate that levels of nitric oxide that are likely to be encountered in the vicinity of airway cells during inflammation may nitrate CFTR resulting in enhanced degradation and decreased function. Decreased levels and function of normal CFTR may account for some of the cystic fibrosis-like symptoms that occur in chronic inflammatory lung diseases associated with increased NO production. Topics: Animals; Cell Line; Cell Membrane; Chlorides; Cyclic AMP; Cyclic GMP; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Cystic Fibrosis Transmembrane Conductance Regulator; Electrophysiology; HeLa Cells; Humans; Mice; Multienzyme Complexes; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Proteasome Endopeptidase Complex; Reactive Nitrogen Species; Reactive Oxygen Species; Respiratory Mucosa; Trachea; Tyrosine | 2002 |
Nitric oxide potently inhibits the rate-limiting enzymatic step in steroidogenesis.
This study tested the hypothesis that nitric oxide (NO) inhibits the rate-limiting catalytic step in steroidogenesis, cytochrome P450 cholesterol side-chain cleaving enzyme (CYP11A1), independent of soluble guanylyl cyclase (GC-S) stimulation. To assess CYP11A1 activity, pregnenolone levels were quantified in murine adrenocortical Y1 cells in the presence of the 3beta-hydroxy-Delta(5)-steroid dehydrogenase inhibitor, 2alpha-cyano-17beta-hydroxy-4,4',17alpha-trimethylandrost-5-ene-3-one. The NO donor, (Z)-1-[2-(2-aminoethyl-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate(deta nonoate), inhibited vasoactive intestinal peptide-, forskolin- and 22alpha-hydroxycholesterol (22HC)-facilitated pregnenolonogenesis in the absence of GC-S activation and in the presence of a GC-S inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). CYP11A1 was also heterologously expressed in monkey COS7 cells. Deta nonoate inhibited 22HC-facilitated activity of the over-expressed enzyme in the absence of GC-S activation and in the presence of ODQ. The NO-independent, GC-S agonist, 1-benzyl-3-(5'-hydroxymethyl-2'-furyl)indazole did not inhibit steroidogenesis. The IC(50) for effects of free NO on CYP11A1 was potent and in the 0.4-2 microM range. These results support the hypothesis that NO inhibits the rate-limiting enzyme in steroidogenesis independent of GC-S activation. Topics: Animals; Catalysis; Cholesterol Side-Chain Cleavage Enzyme; COS Cells; Cyclic GMP; Guanylate Cyclase; Humans; Hydrazines; Mice; Mitochondrial Proteins; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; PC12 Cells; Pregnenolone; Rats; Steroids; Transfection | 2002 |
Activity and expression of nitric oxide synthase in the hypertrophied rat bladder and the effect of nitric oxide on bladder smooth muscle growth.
We investigated the expression and activity of nitric oxide synthase (NOS) and the localization of cyclic guanosine monophosphate (cGMP) in hypertrophied rat bladder. We also examined whether nitric oxide (NO) has a growth inhibitory effect in bladder smooth muscle cells.. The urethra was partly ligated and the bladder was removed 3 days, 3 or 6 weeks after obstruction. NOS activity was determined as the conversion of L-[14C]citrulline from L-[14C]arginine (Amersham Life Science, Solna, Sweden). Neuronal NOS (nNOS) expression was studied with Western blot analysis and immunohistochemistry. The expression of inducible NOS (iNOS) and cGMP was evaluated by immunohistochemistry. The effect of NO on isolated bladder smooth muscle cell growth was assessed as protein and DNA synthesis by [3H]-leucine and [3H]-thymidine (NEN Life Science Products, Zaventem, Belgium) incorporation, respectively.. Ca independent iNOS activity increased after short-term obstruction. Immunohistochemical studies in obstructed bladders demonstrated iNOS expression primarily in urothelial and inflammatory cells. Ca dependent nNOS activity decreased after obstruction, as confirmed by Western blot analysis. The cGMP immunoreactive cells were mainly found within the serosal layer of obstructed bladders. The NO donor DETA-NONOate (Alexis Biochemicals, Lausen, Switzerland) (300 microM.) reduced [3H]-leucine and [ H]-thymidine incorporation by a mean of 29% +/- 2% and 95% +/- 2%, respectively, in cultured bladder smooth muscle cells.. Bladder obstruction caused a small increase in iNOS activity and a decrease in nNOS activity. NO was found to have a growth inhibitory effect in bladder smooth muscle cells, suggesting that changes in NOS activity may influence the progress of bladder hypertrophy. Topics: Animals; Blotting, Western; Calcium; Cell Division; Cells, Cultured; Cyclic GMP; Female; Hydrazines; Hypertrophy; Immunohistochemistry; Muscle, Smooth; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Nitroso Compounds; Rats; Rats, Sprague-Dawley; Urinary Bladder; Urinary Bladder Neck Obstruction | 2002 |
Nitric oxide and cGMP-dependent protein kinase regulation of glucose-mediated thrombospondin 1-dependent transforming growth factor-beta activation in mesangial cells.
Excessive transforming growth factor-beta (TGF-beta) activity in hyperglycemia contributes to the development of diabetic nephropathy. Glucose stimulation of TGF-beta activity and matrix synthesis are dependent on autocrine thrombospondin 1 (TSP1) to convert latent TGF-beta to its biologically active form. The mechanisms by which glucose regulates TSP1 are not known. High glucose inhibits nitric oxide (NO) bioavailability and decreased NO increases TGF-beta activity and extracellular matrix accumulation. Yet, the impact of NO signaling on TSP1 activation of TGF-beta is unknown. We tested the role of NO signaling in the regulation of TSP1 expression and TSP1-dependent TGF-beta activity in rat mesangial cells exposed to high glucose. On exposure to 30 mm glucose, NO accumulation in the conditioned media and intracellular cGMP levels were significantly decreased. The addition of an NO donor prevented the glucose-dependent increase in TSP1 mRNA, protein, and TGF-beta bioactivity. The effects of the NO donor were blocked by ODQ (a soluble guanylate cyclase inhibitor) or Rp-8-pCPT-cGMPS (an inhibitor of cGMP-dependent protein kinase). These effects of high glucose were also reversed by the nitric-oxide synthase cofactor tetrahyrobiopterin (BH(4)). These results show that high glucose mediates increases in TSP1 expression and TSP1-dependent TGF-beta bioactivity through down-modulation of NO-cGMP-dependent protein kinase signaling. Topics: Animals; Cell Line; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Down-Regulation; Enzyme Activation; Enzyme Inhibitors; Glomerular Mesangium; Glucose; Humans; Immunoblotting; Mink; Models, Biological; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Oxadiazoles; Plasminogen Activator Inhibitor 1; Promoter Regions, Genetic; Quinoxalines; Rats; RNA, Messenger; Signal Transduction; Thionucleotides; Thrombospondin 1; Time Factors; Transfection; Transforming Growth Factor beta | 2002 |
Cytokine-induced expression of tPA is differentially modulated by NO and ROS in rat mesangial cells.
Dysregulated expression of diverse proteases and their specific inhibitors is critical for the increase in extracellular matrix accumulation that accompanies chronic inflammatory and sclerotic processes within the renal mesangium. Within the activating cascade of several proteases, the plasminogen system plays an important role.. We tested for modulatory effects of the nitric oxide (NO) donors S-nitroso-N-acetyl-D,L-penicillamine and DETA-NONOate, and the superoxide-generating system hypoxanthine/xanthine oxidase (HXXO) on the expression and activity of tissue plasminogen activator (tPA) by ELISA and Northern blotting.. Interleukin-1beta (IL-1beta)-induced tPA and plasminogen activator inhibitor (PAI)-1 mRNA and supernatant tPA antigen were significantly inhibited by both NO donors, which resulted in a net decrease in the IL-1beta-evoked tPA enzyme activity in the conditioned media. Addition of the NO-synthase inhibitor N-monomethyl l-arginine markedly increased the cytokine-triggered tPA- and PAI-1 mRNA levels, respectively. In contrast, HXXO caused a marked amplification of the IL-1beta-induced steady-state tPA mRNA level and tPA enzyme activity that was blocked by catalase. Since MnTBAP, a superoxide dismutase mimetic, had no effects on the amplification of mRNA levels, we suggest that H2O2 is the candidate reactive oxygen species (ROS) responsible for the potentiation of IL-1beta-triggered tPA and PAI-1 expression.. The temporal relationship between NO and ROS generation is a critical step in the modulation of tPA and PAI-1 expression in mesangial cells and may account for a dysregulation of matrix turnover during inflammatory processes in the renal mesangium. Topics: Animals; Cells, Cultured; Cyclic GMP; Extracellular Matrix; Gene Expression; Glomerular Mesangium; Hydrogen Peroxide; Interleukin-1; Matrix Metalloproteinase 9; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Oxidants; Penicillamine; Plasminogen Activator Inhibitor 1; Rats; Reactive Oxygen Species; RNA, Messenger; Tissue Inhibitor of Metalloproteinase-1; Tissue Plasminogen Activator | 2002 |
A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats.
The adult rodent brain is capable of generating neuronal progenitor cells in the subventricular zone, and in the dentate gyrus of the hippocampus, throughout the life of the animal. Signals that regulate progenitor cell proliferation, differentiation, and migration are not well known. We report that administration of a nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) aminio]diazen-1-ium-1,2-diolate (DETA/NONOate), to young adult rats significantly increases cell proliferation and migration in the subventricular zone and the dentate gyrus. Treatment with DETA/ NONOate also increases neurogenesis in the dentate gyrus. Furthermore, administration of DETA/NONOate to rats subjected to embolic middle cerebral artery occlusion significantly increases cell proliferation and migration in the subventricular zone and the dentate gyrus, and these rats exhibit significant improvements of neurological outcome during recovery from ischemic stroke. Administration of DETA/NONOate significantly increases cortical levels of guanosine monophosphate both in ischemic and nonischemic rats, supporting the role of nitric oxide in promoting cell proliferation and neurogenesis. Thus, our data indicate that nitric oxide is involved in the regulation of progenitor cells and neurogenesis in the adult brain. This suggests that nitric oxide delivered to the brain well after stroke may have therapeutic benefits. Topics: Animals; Bromodeoxyuridine; Cell Division; Cell Movement; Cerebral Cortex; Cyclic GMP; Dentate Gyrus; Disease Models, Animal; Infarction, Middle Cerebral Artery; Lateral Ventricles; Male; Neurons; Nitric Oxide Donors; Nitroso Compounds; Rats; Rats, Wistar; Stroke; Treatment Outcome | 2001 |
Sodium nitroprusside augments human lung fibroblast collagen gel contraction independently of NO-cGMP pathway.
Nitric oxide (NO) relaxes vascular smooth muscle in part through an accumulation of cGMP in the target cells. We hypothesized that a similar effect may also exist on collagen gel contraction mediated by human fetal lung (HFL1) fibroblasts, a model of wound contraction. To evaluate this, HFL1 cells were cultured in three-dimensional type I collagen gels and floated in serum-free DMEM with and without various NO donors. Gel size was measured with an image analyzer. Sodium nitroprusside (SNP, 100 microM) significantly augmented collagen gel contraction by HFL1 cells (78.5 +/- 0.8 vs. 58.3 +/- 2. 1, P < 0.01), whereas S-nitroso-N-acetylpenicillamine, 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride, NONOate, and N(G)-monomethyl-L-arginine did not affect the contraction. Sodium ferricyanide, sodium nitrate, or sodium nitrite was not active. The augmentory effect of SNP could not be blocked by 1H-[1,2, 4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, whereas it was partially reversed by 8-(4-chlorophenylthio) (CPT)-cGMP. To further explore the mechanisms by which SNP acted, fibronectin and PGE(2) production were measured by immunoassay after 2 days of gel contraction. SNP inhibited PGE(2) production and increased fibronectin production by HFL1 cells in a concentration-dependent manner. CPT-cGMP had opposite effects on fibronectin and PGE(2) production. Addition of exogenous PGE(2) blocked SNP-augmented contraction and fibronectin production by HFL1 cells. Therefore, SNP was able to augment human lung fibroblast-mediated collagen gel contraction, an effect that appears to be independent of NO production and not mediated through cGMP. Decreased PGE(2) production and augmented fibronectin production may have a role in this effect. These data suggest that human lung fibroblasts in three-dimensional type I collagen gels respond distinctly to SNP by mechanisms unrelated to the NO-cGMP pathway. Topics: Animals; Cell Line; Collagen; Cyclic GMP; Dinoprostone; Enzyme Inhibitors; Fetus; Fibroblasts; Fibronectins; Gels; Humans; Lung; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Nitroso Compounds; Oxadiazoles; Penicillamine; Platelet Aggregation Inhibitors; Quinoxalines; Rats; Thionucleotides; Vasodilator Agents | 2000 |
Nitric oxide regulation of gene transcription via soluble guanylate cyclase and type I cGMP-dependent protein kinase.
Nitric oxide (NO) regulates the expression of multiple genes but in most cases its precise mechanism of action is unclear. We used baby hamster kidney (BHK) cells, which have very low soluble guanylate cyclase and cGMP-dependent protein kinase (G-kinase) activity, and CS-54 arterial smooth muscle cells, which express these two enzymes, to study NO regulation of the human fos promoter. The NO-releasing agent Deta-NONOate (ethanamine-2,2'-(hydroxynitrosohydrazone)bis-) had no effect on a chloramphenicol acetyltransferase (CAT) reporter gene under control of the fos promoter in BHK cells transfected with an empty vector or in cells transfected with a G-kinase Ibeta expression vector. In BHK cells transfected with expression vectors for guanylate cyclase, Deta-NONOate markedly increased the intracellular cGMP concentration and caused a small (2-fold) increase in CAT activity; the increased CAT activity appeared to be from cGMP activation of cAMP-dependent protein kinase. In BHK cells co-transfected with guanylate cyclase and G-kinase expression vectors, CAT activity was increased 5-fold in the absence of Deta-NONOate and 7-fold in the presence of Deta-NONOate. Stimulation of CAT activity in the absence of Deta-NONOate appeared to be largely from endogenous NO since we found that: (i) BHK cells produced high amounts of NO; (ii) CAT activity was partially inhibited by a NO synthase inhibitor; and (iii) the inhibition by the NO synthase inhibitor was reversed by exogenous NO. In CS-54 cells, we found that NO increased fos promoter activity and that the increase was prevented by a guanylate cyclase inhibitor. In summary, we found that NO activates the fos promoter by a guanylate cyclase- and G-kinase-dependent mechanism. Topics: Animals; Cells, Cultured; Cricetinae; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Cyclic GMP-Dependent Protein Kinase Type I; Cyclic GMP-Dependent Protein Kinases; Enzyme Activation; Guanylate Cyclase; Humans; Nitric Oxide; Nitroso Compounds; Promoter Regions, Genetic; Proto-Oncogene Proteins c-fos; Solubility; Transcription, Genetic; Transcriptional Activation; Transfection | 1999 |
Nitric oxide inhibits heterologous CFTR expression in polarized epithelial cells.
Nitric oxide (. NO) has been implicated in a wide range of autocrine and paracrine signaling mechanisms. Herein, we assessed the role of exogenous. NO in the modulation of heterologous gene expression in polarized kidney epithelial cells (LLC-PK(1)) that were stably transduced with a cDNA encoding human wild-type cystic fibrosis transmembrane conductance regulator (CFTR) under the control of a heavy metal-sensitive metallothionein promoter (LLC-PK(1)-WTCFTR). Exposure of these cells to 125 microM DETA NONOate at 37 degrees C for 24 h (a chemical. NO donor) diminished Zn(2+)-induced and uninduced CFTR protein levels by 43.3 +/- 5.1 and 34.4 +/- 17.1% from their corresponding control values, respectively. These changes did not occur if red blood cells, effective scavengers of. NO, were added to the medium. Exposure to. NO did not alter lactate dehydrogenase release in the medium or the extent of apoptosis. Coculturing LLC-PK(1)-WTCFTR cells with murine fibroblasts that were stably transduced with the human inducible. NO synthase cDNA gene also inhibited CFTR protein expression in a manner that was antagonized by 1 mM N(G)-monomethyl-L-arginine in the medium. Pretreatment of LLC-PK(1)-WTCFTR with ODQ, an inhibitor of guanylyl cyclase, did not affect the ability of. NO to inhibit heterologous CFTR expression; furthermore, 8-bromo-cGMP had no effect on heterologous CFTR expression. These data indicate that. NO impairs the heterologous expression of CFTR in epithelial cells at the protein level via cGMP-independent mechanisms. Topics: 3T3 Cells; Animals; Cell Polarity; Cyclic GMP; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Humans; Kidney; LLC-PK1 Cells; Mice; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroso Compounds; Signal Transduction; Swine | 1999 |
Nitric oxide inhibits human aldosteronogenesis without guanylyl cyclase stimulation.
Deta nonoate (deta-NO), a zwitterion nitric oxide (NO) donor, potently inhibited forskolin- and angiotensin II-stimulated aldosterone production in human adrenocortical H295R cells in a concentration-dependent manner (0.1-1000 microM). The half-maximal and maximal inhibition of forskolin-evoked aldosteronogenesis occurred at 0.6 and 100 microM deta-NO, respectively. The respective half-maximal and maximal deta-NO-mediated inhibition of angiotensin II-stimulated aldosterone generation occurred at 150 microM and 1 mM. In H295R cells, deta-NO and sodium nitroprusside did not stimulate cGMP production, and the soluble guanylyl cyclase inhibitor oxadiazoloquinoxalinone (10 microM) did not block deta-NO-mediated attenuation of aldosteronogenesis. 25-Hydroxycholesterol (10 microM)-facilitated aldosterone synthesis was also diminished with half-maximal and maximal inhibition occurring at 120 microM and 1 mM deta-NO, respectively. Taken together, these results demonstrate that NO inhibits human aldosteronogenesis without stimulating guanylyl cyclase in H295R cells. Topics: Adrenal Cortex; Aldosterone; Angiotensin II; Animals; Cell Line; Colforsin; Cyclic GMP; Enzyme Inhibitors; Guanylate Cyclase; Humans; Hydroxycholesterols; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Nitroso Compounds; Oxadiazoles; PC12 Cells; Quinoxalines; Rats | 1999 |
Neuroprotective effects of DETA-NONOate, a nitric oxide donor, on hydrogen peroxide-induced neurotoxicity in cortical neurones.
Nitric oxide (NO) has been proposed to exert neuroprotective actions against oxidative damage acting directly as an antioxidant; in addition, it has also been suggested that NO might be cytoprotective by increasing cyclic GMP concentrations via activation of soluble guanylate cyclase. In this context, we have previously shown that cyclic GMP elevations confer cytoprotection against the neurotoxicity induced by SIN-1 in the presence of superoxide dismutase, conditions in which cell death seems to be a consequence of hydrogen peroxide (H2O2) formation. We have now found that H2O2 (20-100 microM) causes neurotoxicity in 1-week-old rat cortical neurones and that this effect is inhibited by the NO donor DETA-NONOate (1-10 microM). We have also found that 1H-[1,2,4]oxadiazolo[4,3,-alpha]quinoxalin-1-one (ODQ), a selective inhibitor of soluble guanylate cyclase, reverses the effect induced by DETA-NONOate, and that this action of ODQ is mimicked by 8-(4-chlorophenylthio)guanosine-3',5'-monophosphorothioate (Rp-8-pCPT-cGMPS), an inhibitor of cyclic GMP-dependent protein kinase, suggesting that the pathway affording protection involves activation of this kinase by cyclic GMP elevations. Simultaneously, ODQ inhibits the elevation of cyclic GMP concentrations induced by DETA-NONOate (1-3 microM) in cortical cells. Finally, we have also shown that the cyclic GMP mimetic, 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cyclic GMP) inhibits the neurotoxicity induced by H2O2 (30-40 microM). Taken together, these data demonstrate that NO-induced cyclic GMP elevations confer cytoprotection against H2O2-induced neuronal cell death. Topics: Animals; Animals, Newborn; Cell Survival; Cells, Cultured; Cerebral Cortex; Cyclic GMP; Enzyme Inhibitors; Hydrogen Peroxide; Neurons; Neuroprotective Agents; Nitric Oxide Donors; Nitroso Compounds; Oxadiazoles; Quinoxalines; Rats; Thionucleotides | 1999 |
eNOS gene transfer inhibits smooth muscle cell migration and MMP-2 and MMP-9 activity.
Vascular smooth muscle cell (SMC) migration is a critical step in the development of neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and the extracellular matrix, facilitating SMC migration. Transfer of the endothelial nitric oxide synthase (eNOS) gene to the injury site inhibits neointima formation. Neither the signaling pathways leading to NO-mediated inhibition of SMC migration and proliferation nor the alterations in these pathways have been characterized. We hypothesize that NO inhibits SMC migration in part by regulating MMP activity. To test this hypothesis, we transfected cultured rat aortic SMCs with replication-deficient adenovirus containing bovine eNOS gene and analyzed the conditioned medium for MMP activity. We observed that eNOS gene transfer significantly (P<0.05) inhibited SMC migration and significantly (P<0.05) decreased MMP-2 and MMP-9 activities in the conditioned medium. Similarly, addition of the NO donor DETA NONOate and 8-bromo-cGMP to the culture medium significantly decreased MMP-2 and MMP-9 activities in the conditioned medium collected 24 hours after treatment. Furthermore, Western blot analysis of the conditioned medium collected from eNOS gene-transfected SMCs showed a significant increase in tissue inhibitor of metalloproteinases-2 (TIMP-2) levels. Our data suggest that NO decreases MMP-2 and MMP-9 activities and increases TIMP-2 secretion, and this shifts the balance of MMP activity, which may favor the inhibition of cell migration because of inhibition of extracellular matrix degradation. Topics: Adenoviridae; Animals; Aorta; Blotting, Western; Cell Movement; Cells, Cultured; Coronary Vessels; Cyclic GMP; Enzyme Activation; Gene Expression Regulation, Enzymologic; Gene Transfer Techniques; Guinea Pigs; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Matrix Metalloproteinase Inhibitors; Muscle, Smooth, Vascular; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitroso Compounds; Rats; Tissue Inhibitor of Metalloproteinase-2 | 1999 |
Effect of selective inhibition of soluble guanylyl cyclase on the K(Ca) channel activity in coronary artery smooth muscle.
Activation of a soluble guanylyl cyclase plays an important role in nitric oxide (NO)-induced vasodilation. Recently, we have reported that NO increases the calcium-activated potassium (K(Ca)) channel activity in vascular smooth muscle cells from coronary arteries. The present study examined the role of the soluble guanylyl cyclase in the control of basal activity of the K(Ca) channels and in mediating NO-induced activation of the K(Ca) channels in vascular smooth muscle cells, using a selective inhibitor of this enzyme, 1H-[1,2,4]oxadiazolo[4,2-alpha]quinoxalin-1-one (ODQ). In the cell-attached patch-clamp mode, addition of ODQ into the bath solution (10 micromol/L) decreased the K(Ca) channel activity by 59% and attenuated activation of the channels induced by the NO donor, deta nonoate, by 70%. ODQ had no effect on 8-bromo-cGMP-induced activation of the K(Ca) channels. Deta nonoate produced a concentration-dependent relaxation of precontracted coronary arteries. When ODQ was added to the bath, the deta nonoate-induced relaxations were inhibited. The IC50 for deta nonoate was decreased by about 25-fold and the maximal effect of deta nonoate was reduced by about 60%. A specific K(Ca) channel inhibitor, iberiotoxin, decreased deta nonoate-induced vasodilation but to a lesser extent than ODQ. However, ODQ was without effect on the vasodilation induced by a prostacyclin analog, iloprost, and by adenosine. These results indicate that a soluble guanylyl cyclase and cGMP play an important role in the control of the K(Ca) channel activity in coronary arterial smooth muscle cells. K(Ca) channel activation participates in the NO-induced vasodilation in coronary circulation. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenosine; Animals; Cattle; Coronary Vessels; Cyclic GMP; Enzyme Inhibitors; Guanylate Cyclase; Iloprost; In Vitro Techniques; Kinetics; Membrane Potentials; Muscle Contraction; Muscle, Smooth, Vascular; Nitroso Compounds; Oxadiazoles; Patch-Clamp Techniques; Peptides; Potassium Channels; Quinoxalines; Scorpion Venoms; Vasodilation | 1998 |
The nitric oxide-cyclic GMP pathway plays an essential role in both promoting cell survival of cerebellar granule cells in culture and protecting the cells against ethanol neurotoxicity.
NMDA has two beneficial effects on primary neuronal cultures of cerebellar granule cells (CGCs) established from 10-day-old rat pups. First, NMDA is neurotrophic and will enhance survival of CGCs in culture in the absence of ethanol. Second, ethanol exposure will induce cell death in CGC cultures, and NMDA can lessen this ethanol-induced cell loss, i.e., NMDA is neuroprotective. Because NMDA can stimulate production of nitric oxide (NO), which can in turn enhance synthesis of cyclic GMP, this study tested the hypothesis that the NO-cyclic GMP pathway is essential for NMDA-mediated neurotrophism and neuroprotection. Inhibiting the synthesis of NO with N(G)-nitro-L-arginine methyl ester eliminated both the NMDA-mediated neurotrophic and neuroprotective effects. Similarly, inhibiting production of cyclic GMP with the agent LY83583 also abolished these effects. The NO generator 2,2'-(hydroxynitrosohydrazono) bisethanamine produced neurotrophic and neuroprotective effects that were similar to those induced by NMDA. Also, 8-bromo-cyclic GMP produced neurotrophic and neuroprotective effects that were quite similar to the effects produced by NMDA. In conclusion, NMDA enhances survival of cerebellar granule cells and protects the cells against ethanol-induced cell death by a mechanism(s) that involves the NO-cyclic GMP pathway. Topics: Aminoquinolines; Animals; Cell Survival; Cells, Cultured; Cerebellum; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Ethanol; N-Methylaspartate; Neurons; Neuroprotective Agents; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitroso Compounds; Rats; Rats, Sprague-Dawley | 1998 |
Nitric oxide inhibits aldosterone synthesis by a guanylyl cyclase-independent effect.
To investigate the mechanism of nitric oxide (NO) inhibition of aldosterone release, this study compared the effects of type A natriuretic peptide and heat-stable enterotoxin to a nitric oxide donor, deta nonoate, on cGMP production and angiotensin II-stimulated aldosterone synthesis ill primary cultures of bovine adrenal zona glomerulosa cells. Type A natriuretic peptide (10(-10)-10(-6) M) and deta nonoate (10(-6)-10(-3) M) stimulated concentration-related increases in cGMP production. Heat-stable enterotoxin (10(-6) M) failed to stimulate cGMP synthesis in zona glomerulosa cells. Type A natriuretic peptide and deta nonoate attenuated angiotensin II-stimulated aldosterone production over the same concentration range that stimulated cGMP production. Heat-stable enterotoxin (10(-6) M) was without effect on aldosterone release. To further test the hypothesis that cGMP mediated the inhibition of aldosterone synthesis, the selective inhibitor of soluble guanylyl cyclase, 1H-(1,2,4)oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) was used. ODQ pretreatment (10(-5) M) completely prevented deta nonoate-stimulated cGMP production without altering the inhibitory effect of deta nonoate on angiotensin II-stimulated steroidogenesis. Consistent with its selectivity for inhibiting soluble guanylyl cyclase, ODQ did not block type A natriuretic peptide-stimulated cGMP synthesis or type A natriuretic peptide inhibition of steroidogenesis. Deta nonoate completely blocked 25-hydroxycholesterol- and progesterone-stimulated aldosterone synthesis in zona glomerulosa cells and inhibited the conversion of 25-hydroxycholesterol to pregnenolone in mitochondrial fractions from bovine adrenal cortex. Deta nonoate-derived NO gave an absorbance maximum of the mitochondrial cytochrome P450 of 453 nm and inhibited the absorbance at 450 nm caused by carbon monoxide binding to the enzyme. These results suggest that deta nonoate reduces steroidogenesis independent of guanylyl cyclase activation and that NO has a direct effect to inhibit the activity of cytochrome P450, probably by binding to the heme groups of the cytochrome. Topics: Aldosterone; Animals; Atrial Natriuretic Factor; Bacterial Toxins; Cattle; Cells, Cultured; Cyclic GMP; Enterotoxins; Escherichia coli Proteins; Guanylate Cyclase; Humans; Nitric Oxide; Nitroso Compounds; Oxadiazoles; Pregnenolone; Quinoxalines; Zona Glomerulosa | 1998 |
Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation.
Effects of a novel soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), were characterized on guanylyl cyclase activity in cytosolic fraction of COS-7 cells overexpressing the alpha 1 and beta 1 subunits of the rat soluble enzyme. ODQ was a noncompetitive inhibitor of soluble guanylyl cyclase with respect to Mn2+ or Mn(2+)-GTP and was a mixed competitive/noncompetitive inhibitor with respect to nitric oxide (NO) donation. ODQ (10 mumol/L) reduced deta nonoate-stimulated cGMP production in COS-7 cells overexpressing soluble guanylyl cyclase and in rat aortic vascular smooth muscle cells. ODQ did not inhibit particulate forms of the enzyme rat guanylyl cyclase-A, -B, or -C, did not block NO synthase, and did not auto-oxidize deta nonoate-donated NO in the presence of cells at physiological pH. Therefore, ODQ is a selective inhibitor of soluble guanylyl cyclase. Using ODQ in isolated aortic ring preparations, we tested the hypothesis that soluble guanylyl cyclase mediates vasorelaxant activity associated with NO. Phenylephrine (100 nmol/L)-precontracted, isolated rat aortas were relaxed in a concentration-dependent manner by deta nonoate (0.01 to 100 mumol/L) and nitroglycerin (0.01 to 300 mumol/L). ODQ (10 mumol/L) attenuated deta nonoate- and nitroglycerin-mediated relaxation of contracted aortas. ODQ had no effect on natriuretic peptide-, 8-bromo-cGMP-, isoproterenol-, or bimakalim-mediated aortic relaxation. These results support the hypothesis that soluble guanylyl cyclase mediates vasorelaxant activity associated with nitric oxide. Topics: Animals; Aorta; COS Cells; Cyclic GMP; Guanosine Triphosphate; Male; Muscle Relaxation; Muscle, Smooth, Vascular; Nitric Oxide; Nitroglycerin; Nitroso Compounds; Oxadiazoles; Oxidation-Reduction; Phenylephrine; Quinoxalines; Rats; Rats, Sprague-Dawley; Xanthine; Xanthine Oxidase; Xanthines | 1997 |