cyclic-gmp and 2--5--dideoxyadenosine

cyclic-gmp has been researched along with 2--5--dideoxyadenosine* in 8 studies

Other Studies

8 other study(ies) available for cyclic-gmp and 2--5--dideoxyadenosine

ArticleYear
Multiple pathways from three types of sugar receptor sites to metabotropic transduction pathways of the blowfly: study by the whole cell-clamp experiments.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2011, Volume: 160, Issue:1

    Multiple pathways from three types of multiple receptor sites to three types of metabotropic signal transduction pathways were investigated in the whole cell-clamp experiments using isolated labellar sugar receptor neurons (cells) of the adult blowfly, Phormia regina. First, the concentration-response curves of three types of sweet taste components specialized to multiple receptor sites were obtained: sucrose for the pyranose sites (P-sites), fructose for the furanose sites (F-sites), and l-valine for the alkyl sites (R-sites). Next, the effects of inhibitors such as 2', 5'-dideoxyadenosine on adenylyl cyclase in the cAMP pathway, LY 83583 on guanylyl cyclase in the cGMP pathway, and U-73122 on phospholipase C in the IP₃ pathway were examined. The results showed that all of the inhibitors affected each specific target in the second-messenger transduction pathways. The obtained results verified that the P-site corresponded to the cAMP, the F-site to the cGMP, and the R-site to the IP₃ transduction pathway, and that these three signal pathways did not have crossing points.

    Topics: Adenylyl Cyclase Inhibitors; Aminoquinolines; Animals; Chemoreceptor Cells; Cyclic AMP; Cyclic GMP; Dideoxyadenosine; Diptera; Estrenes; Fructose; Guanylate Cyclase; Patch-Clamp Techniques; Pyrrolidinones; Signal Transduction; Sucrose; Taste; Type C Phospholipases; Valine

2011
Stimulation of the cAMP system by the nitric oxide-cGMP system underlying the formation of long-term memory in an insect.
    Neuroscience letters, 2009, Dec-25, Volume: 467, Issue:2

    The nitric oxide (NO)-cGMP signaling system and cAMP system play critical roles in the formation of multiple-trial induced, protein synthesis-dependent long-term memory (LTM) in many vertebrates and invertebrates. The relationship between the NO-cGMP system and cAMP system, however, remains controversial. In honey bees, the two systems have been suggested to converge on protein kinase A (PKA), based on the finding in vitro that cGMP activates PKA when sub-optimal dose of cAMP is present. In crickets, however, we have suggested that NO-cGMP pathway operates on PKA via activation of adenylyl cyclase and production of cAMP for LTM formation. To resolve this issue, we compared the effect of multiple-trial conditioning against the effect of an externally applied cGMP analog for LTM formation in crickets, in the presence of sub-optimal dose of cAMP analog and in condition in which adenylyl cyclase was inhibited. The obtained results suggest that an externally applied cGMP analog activates PKA when sub-optimal dose of cAMP analog is present, as is suggested in honey bees, but cGMP produced by multiple-trial conditioning cannot activate PKA even when sub-optimal dose of cAMP analog is present, thus indicating that cGMP produced by multiple-trial conditioning is not accessible to PKA. We conclude that the NO-cGMP system stimulates the cAMP system for LTM formation. We propose that LTM is formed by an interplay of two classes of neurons, namely, NO-producing neurons regulating LTM formation and NO-receptive neurons that are more directly involved in the formation of long-term synaptic plasticity underlying LTM formation.

    Topics: Adenylyl Cyclase Inhibitors; Animals; Bucladesine; Conditioning, Classical; Conditioning, Operant; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Dideoxyadenosine; Enzyme Activation; Gryllidae; Male; Memory; Nitric Oxide

2009
Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside.
    British journal of haematology, 2002, Volume: 117, Issue:3

    In studies on human platelets, nitroprusside (NP) alone at 1-10 micromol/l increased platelet cyclic AMP (cAMP) by 40-70%, whereas increases in cyclic GMP (cGMP) were much larger in percentage though not in concentration terms. Collagen enhanced these increases in cAMP up to fourfold, without affecting cGMP. This effect was partly prevented by indomethacin or aspirin, indicating that platelet cyclo-oxygenase products acted synergistically with NP to increase cAMP. ADP released from the platelets by collagen tended to restrict this cAMP accumulation. Addition of 2',5'-dideoxyadenosine (DDA), an inhibitor of adenylyl cyclase, decreased both the inhibition of collagen-induced platelet aggregation by NP and the associated accumulation of cAMP without affecting cGMP, indicating that cAMP mediates part of the inhibitory effect of NP. Unlike DDA, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of guanylyl cyclase, blocked all increases in both cGMP and cAMP caused by NP, as well as the inhibition of platelet aggregation, suggesting that cAMP accumulation was secondary to that of cGMP. Human platelet cGMP-dependent protein kinase (PKG) coelectrophoresed with the purified bovine type Ibeta isoenzyme. An inhibitor of this enzyme (Rp)-beta-phenyl-1,N2-etheno-8-bromoguanosine 3',5'-cyclic-monophosphorothioate, diminished the inhibition of collagen-induced platelet aggregation by NP, but had little additional effect when DDA was present. This showed that both PKG and cAMP participate in the inhibition of collagen-induced platelet aggregation by NP. Moreover, selective activators of PKG and cAMP-dependent protein kinases had supra-additive inhibitory effects, suggesting that an optimal inhibitory effect of NP requires simultaneous activation of both enzymes.

    Topics: Cells, Cultured; Collagen; Cyclic AMP; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Dideoxyadenosine; Dose-Response Relationship, Drug; Humans; Nitric Oxide Donors; Nitroprusside; Platelet Aggregation

2002
Dominant role of cAMP in regulation of microvessel permeability.
    American journal of physiology. Heart and circulatory physiology, 2000, Volume: 278, Issue:4

    We reported previously that increasing cAMP levels in endothelial cells attenuated ATP-induced increases in hydraulic conductivity (L(p)), and that the activation of cGMP-dependent pathways was a necessary step to increase L(p) in response to inflammatory mediators. The aim of the present study was to evaluate the role of basal levels of cAMP in microvessel permeability under resting conditions and to evaluate the cross talk between cAMP- and cGMP-dependent signaling mechanisms in regulation of microvessel permeability under stimulated conditions, using individually perfused microvessels from frog and rat mesenteries. We found that reducing cAMP levels by inhibition of adenylate cyclase or inhibiting cAMP-dependent protein kinase through the use of H-89 increased basal L(p) in both frog and rat mesenteric venular microvessels. We also found that 8-bromocAMP (8-BrcAMP, 0.2 and 2 mM) was sufficient to attenuate or abolish the increases in L(p) due to exposure of frog mesenteric venular microvessels to 8-BrcGMP (2 mM) and ATP (10 microM). Similarly, in rat mesenteric venular microvessels, application of 8-BrcAMP (2 mM) abolished the increases in L(p) due to exposure to 8-BrcGMP alone (2 mM) or with the combination of bradykinin (1 nM). In addition, application of erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of cGMP-stimulated phosphodiesterase, significantly attenuated both 8-BrcGMP- and bradykinin-induced increases in L(p). These results demonstrate that basal levels of cAMP are critical to maintaining normal permeability under resting conditions, and that increased levels of cAMP are capable of overcoming the activation of cGMP-dependent pathways, therefore preventing increases in microvessel permeability. The balance between endothelial concentrations of these two opposing cyclic nucleotides controls microvessel permeability, and cAMP levels play a dominant role.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Adenine; Adenosine Triphosphate; Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Animals; Bradykinin; Calcium-Calmodulin-Dependent Protein Kinases; Capillaries; Capillary Permeability; Cyclic AMP; Cyclic GMP; Dideoxyadenosine; Enzyme Inhibitors; Female; Isoquinolines; Male; Mesenteric Veins; Rana pipiens; Rats; Rats, Sprague-Dawley; Receptor Cross-Talk; Sulfonamides; Venules

2000
Calcitonin gene-related peptide relaxes rabbit iris dilator smooth muscle via cyclic AMP-dependent mechanisms: cross-talk between the sensory and sympathetic nervous systems.
    Current eye research, 1998, Volume: 17, Issue:2

    The purpose of these studies is to determine whether or not cyclic AMP is involved in the relaxant action of calcitonin gene-related peptide (CGRP) in rabbit iris dilator muscle.. Iris dilator muscle isolated from rabbit was used. Accumulation of cAMP and cGMP in the tissue extracts was measured by radioimmunoassay (RIA), IP3 production was measured by ion-exchange chromatography, and changes in tension were recorded isometrically.. CGRP, vasoactive intestinal peptide, prostaglandin E2, isoproterenol and forskolin (1 microM of each) increased cAMP accumulation by 136, 256, 78, 141 and 315%, respectively. CGRP dose-dependently increased cAMP accumulation (EC50 = 5.25 nM), inhibited IP3 production (EC50 = 5.4 nM) and induced relaxation (EC50 = 10 nM) in muscle precontracted with norepinephrine (NE) (10 microM). Prostaglandin E2, isoproterenol and forskolin also induced relaxation. CGRP stimulated cAMP formation either in the presence or absence of 3-isobutyl-1-methylxanthine (IBMX), a cAMP phosphodiesterase inhibitor, in a time- and concentration-dependent manner. The neuropeptide had no effect on cGMP accumulation. CGRP (8-37), a CGRP receptor antagonist, reversed the relaxant action of the neuropeptide and inhibited CGRP-induced cAMP accumulation in a concentration-dependent manner (IC50 = 12.5 nM). 2',5'-dideoxyadenosine (DDA), a specific adenylate cyclase inhibitor, significantly reduced the inhibitory actions of CGRP on NE-induced contraction and IP3 production and inhibited CGRP-induced cAMP accumulation in a concentration-dependent manner (IC50 = 6.9 nM).. These results strongly suggest that cAMP mediates the relaxant action of CGRP in rabbit iris dilator. The mechanism of cAMP inhibition of NE-induced IP3 production and contraction is unclear. Modulation of alpha 1-adrenergic function in the iris dilator by CGRP-induced cAMP formation is yet another example of cross-talk between the cAMP and IP3-Ca2+ second messenger systems, it demonstrates a cross-talk between the sympathetic and sensory nervous systems. CGRP-containing sensory nerve fibers could play an important role in regulation of smooth muscle function in the iris-ciliary body.

    Topics: 1-Methyl-3-isobutylxanthine; Adrenergic alpha-Agonists; Animals; Calcitonin Gene-Related Peptide; Cyclic AMP; Cyclic GMP; Dideoxyadenosine; Dose-Response Relationship, Drug; Inositol 1,4,5-Trisphosphate; Iris; Muscle Relaxation; Muscle, Smooth; Neurons, Afferent; Nitroprusside; Norepinephrine; Phosphodiesterase Inhibitors; Rabbits; Radioimmunoassay; Sympathetic Nervous System

1998
YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase.
    British journal of pharmacology, 1995, Volume: 116, Issue:3

    1. Our previous study demonstrated that YC-1, a derivative of benzylindazole, is a novel activator of soluble guanylate cyclase (sGC) in rabbit platelets. This work investigated whether the antiplatelet effect of YC-1 was mediated by a nitric oxide (NO)/sGC/cyclic GMP pathway in human platelets. 2. In human washed platelets, YC-1 inhibited platelet aggregation and ATP released induced by U46619 (2 microM), collagen (10 micro ml(-1)) and thrombin (0.1 u ml(-1)) in a concentration-dependent manner with IC50 values of (microM) 2.1 +/- 0.03, 11.7 +/- 2.1 and 59.3 +/- 7.1, respectively. 3. In a 30,000 g supernatant fraction from human platelet homogenate, YC-1 (5-100 microM) increased sGC activity in a concentration-dependent manner. At the same concentration-range, YC-1 elevated cyclic GMP levels markedly, but only slightly elevated cyclic AMP levels in the intact platelets. 4. MY-5445, a selective inhibitor of cyclic GMP phosphodiesterase, potentiated the increases in cyclic GMP caused by YC-1, and shifted the concentration-anti-aggregation curve of YC-1 to the left. In contrast, HL-725, a selective inhibitor of cyclic AMP phosphodiesterase, did not affect either the increases in cyclic nucleotides or the anti-aggregatory effect caused by YC-1. 5. Methylene blue, an inhibitor of sGC, blocked the increases of cyclic GMP caused by YC-1, and attenuated markedly the anti-aggregatory effect of YC-1. The adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA) did not affect YC-1-induced inhibition of platelet aggregation. 6. Haemoglobin, which binds NO, prevented the activation of sGC and anti-aggregatory effect caused by sodium nitroprusside, but did not affect YC-1 response. 7. These results would suggest that YC-1 activates sGC of human platelets by a NO-dependent mechanism, and exerts its antiplatelet effects through the sGC/cyclic GMP pathway.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenosine Triphosphate; Blood Platelets; Collagen; Cyclic AMP; Cyclic GMP; Dideoxyadenosine; Dose-Response Relationship, Drug; Enzyme Activation; Furans; Guanylate Cyclase; Hemoglobins; Humans; Indazoles; Nitric Oxide; Phosphodiesterase Inhibitors; Phthalazines; Platelet Aggregation Inhibitors; Prostaglandin Endoperoxides, Synthetic; Solubility; Thrombin; Thromboxane A2; Vasoconstrictor Agents

1995
Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery.
    The American journal of physiology, 1990, Volume: 258, Issue:4 Pt 1

    We have previously reported that the isolated rat branch pulmonary artery (PA) contracts when made hypoxic and that the contraction is dependent in large part on the presence of a functioning endothelium. This study tested if the hypoxic contraction was caused by reduced endothelium-derived relaxing factor (EDRF) activity. To do so we tested if chemical inhibitors of EDRF mimicked the effect of hypoxia, if PA guanosine 3',5'-cyclic monophosphate (cGMP) fell during hypoxic contraction, and if stimulation of smooth muscle cGMP attenuated hypoxic contraction. We found that the EDRF inhibitors hemoglobin and methylene blue caused a concentration-dependent increase in PA force that equaled that produced by hypoxia. PA cGMP decreased in endothelium-intact rings from 105 +/- 14 pM/g (wet wt) during normoxia to 41 +/- 9 pM/g during hypoxia. In endothelium-denuded rings normoxic cGMP was reduced to 32 +/- 10 pM/g with no further decrease during hypoxia. The endothelium-independent stimulators of cGMP, nitric oxide, and 8-bromo-cGMP, reduced maximum hypoxic contraction by 80 +/- 11 and 93 +/- 3%, respectively, whereas the endothelium-dependent stimulator acetylcholine did not. PA adenosine 3',5'-cyclic monophosphate (cAMP) fell only slightly during hypoxia and cAMP inhibitors failed to mimic the hypoxic contraction. We conclude that the hypoxic contraction of isolated rat PA is caused largely by decreased EDRF activity.

    Topics: Acetylcholine; Adenosine Monophosphate; Animals; Cyclic AMP; Cyclic GMP; Dideoxyadenosine; Endothelium, Vascular; Hemoglobins; Hypoxia; In Vitro Techniques; Isomerism; Kinetics; Male; Methylene Blue; Muscle, Smooth, Vascular; Nitric Oxide; Phenylephrine; Pulmonary Artery; Rats; Rats, Inbred Strains; Thionucleotides; Vasodilation

1990
Cardiac effects of adenosine and adenosine analogs in guinea-pig atrial and ventricular preparations: evidence against a role of cyclic AMP and cyclic GMP.
    The Journal of pharmacology and experimental therapeutics, 1985, Volume: 234, Issue:3

    The effects of adenosine, the Ri site adenosine receptor agonist (-)-N6-phenylisopropyladenosine (PIA), the Ra site agonist 5'-N-ethylcarboxamideadenosine (NECA) and the P site agonist 2',5'-dideoxyadenosine (DIDA) on force of contraction, cyclic AMP (cAMP) and cyclic GMP (cGMP) content and on transmembrane action potential were studied in isolated electrically driven left auricles and papillary muscles from guinea pigs. Furthermore, the effects on adenylate cyclase activity in a particulate membrane preparation were investigated. In the auricles, adenosine, PIA and NECA had negative inotropic effects which were accompanied by a shortening of the action potential. Theophylline antagonized these effects which are likely mediated by R site adenosine receptors. DIDA was ineffective. Except for a small positive inotropic effect of adenosine the analogs were ineffective in the papillary muscles. None of the mechanical effects was accompanied by a change in cAMP and cGMP content in the intact preparations. In the broken cell preparation PIA and NECA had no effect on adenylate cyclase activity. Adenosine and DIDA inhibited the enzyme. The latter effects can be classified as P site-mediated effects. In conclusion, distinct mechanical, i.e., negative inotropic effects of adenosine and its analogs in the heart are observed in auricular preparations only. These effects are unlikely to be related to the cAMP and/or cGMP system. Instead, they are probably due to a direct shortening of the action potential which, in turn, is conceivably due to an increase in K+ outward current and a secondary decrease in Ca++ inward current. This effect is apparently mediated by cardiac R site adenosine receptors which are not detectably coupled to adenylate cyclase.

    Topics: Adenosine; Adenosine-5'-(N-ethylcarboxamide); Adenylyl Cyclases; Animals; Cyclic AMP; Cyclic GMP; Deoxyadenosines; Dideoxyadenosine; Dose-Response Relationship, Drug; Female; Guinea Pigs; Heart; In Vitro Techniques; Male; Membrane Potentials; Myocardial Contraction; Papillary Muscles; Phenylisopropyladenosine

1985