cyclic-gmp and 1-amino-1-3-dicarboxycyclopentane

cyclic-gmp has been researched along with 1-amino-1-3-dicarboxycyclopentane* in 8 studies

Other Studies

8 other study(ies) available for cyclic-gmp and 1-amino-1-3-dicarboxycyclopentane

ArticleYear
mGluR7-like metabotropic glutamate receptors inhibit NMDA-mediated excitotoxicity in cultured mouse cerebellar granule neurons.
    The European journal of neuroscience, 1999, Volume: 11, Issue:2

    Glutamate-induced glutamate release may be involved in the delayed neuronal death induced by N-methyl-D-aspartate (NMDA). In order to examine a possible modulatory effect of the presynaptic group III mGluRs on glutamate excitotoxicity, the effect of L-2-amino-4-phosphonobutyrate (L-AP4) was examined on NMDA-induced delayed death of mouse cerebellar granule neurons in culture. We found that L-AP4, at high concentration (in the millimolar range), inhibited in a non-competitive manner the NMDA-induced toxicity. This effect was mimicked by high concentration of L-serine-o-phosphate (L-SOP), and was inhibited by pertussis toxin (PTX) indicating the involvement of a Gi/o protein. This suggests the involvement of mGluR7 in the L-AP4 effect, and this was consistent with the detection of both mGluR7 protein and mRNA in these cultured neurons. To examine the mechanism of the L-AP4-induced protection from excitotoxic damage, the effect of L-AP4 on glutamate release was examined. L-AP4 (> or = 1 mM) noncompetitively inhibited by more than 60% the glutamate release induced by NMDA during the insult. We also observed that the 10-min NMDA receptor stimulation resulted in a dramatic increase in the extracellular glutamate concentration reaching 6000% of the control value 24 h after the insult. This large increase was also inhibited when NMDA was applied in the presence of > or = 1 mM L-AP4. Part of the L-AP4-induced protection from excitotoxic damage of granule neurons may therefore result from the inhibition of the vicious cycle: dying cells release glutamate, glutamate induced cell death. The present results add to the hypothesis that presynaptic mGluRs, probably mGluR7, may be the targets of drugs decreasing glutamate release and then neuronal death observed in some pathological situations.

    Topics: Animals; Calcium Channels; Cell Death; Cells, Cultured; Cerebellum; Cyclic GMP; Cycloleucine; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Kainic Acid; Mice; Microtubule-Associated Proteins; N-Methylaspartate; Neurons; Neuroprotective Agents; Neurotoxins; Patch-Clamp Techniques; Phosphoserine; Propionates; Receptors, AMPA; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate

1999
Characterization of metabotropic glutamate receptor-mediated facilitation of N-methyl-D-aspartate depolarization of neocortical neurones.
    British journal of pharmacology, 1996, Volume: 117, Issue:4

    1. Facilitation of the N-methyl-D-aspartate (NMDA) receptor-mediated depolarization of cortical neurones induced by metabotropic glutamate receptor (mGluR) agonists in the presence of tetrodotoxin has been examined by use of grease-gap recording. 2. Quisqualate (1-2 microM) and 10 to 100 microM 1S,3R-I-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) facilitated the NMDA-, but not the kainate-induced depolarization with an EC50 of 16 microM for 1S,3R-ACPD. The facilitation induced by quisqualate was reduced, but not blocked, by 4 microM 6-cyano-7-nitroquinoxaline-2,3-dione. 3. D,L-2-Amino-3-phosphonopropionic acid and D,L-2-amino-4-phosphonobutyric acid antagonized the 1S,3R-ACPD facilitation in a non-competitive manner with IC50 values of 0.24 microM and 4.4 microM respectively. 4. Homologous desensitization of the 1S,3R-ACPD induced facilitation was not observed. The facilitation was not altered by 10 nM staurosporine or 3 microM phorbol diacetate. 5. Substitution of 20 microM 8-bromo-cyclic adenosine monophosphate, 20 microM 8-bromo-cyclic guanosine monophosphate, or 10 microM arachidonic acid for 1S,3R-ACPD did not induce facilitation of the NMDA response. However, the 1S,3R-ACPD facilitation was potentiated by 10 mM myo-inositol and exhibited heterologous desensitization following exposure to 100 microM 5-hydroxytryptamine. 6. The 1S,3R-ACPD-induced facilitation persisted in both 10 microM nifedipine and nominally Ca(2+)-free medium and was only gradually eliminated following addition of 100 microM bis-(-o-aminophenoxy)-ethane-N,N,N,N-tetraacetic acid in Ca(2+)-free medium. Facilitation of the NMDA response induced by carbachol, but not phenylephrine, was also observed in nominally Ca(2+)-free medium. Perfusing 50 microM bis-(-aminophenoxy)-ethane-N,N,N,N-tetraacetic acid aminoethoxy eliminated the 1S,3R-ACPD facilitation. 7. These experiments have shown that mGluR agonists selectively facilitate the NMDA depolarization of cortical wedges, most likely by activating one or more mGluR subtypes that couple to phospholipase C. We conclude the facilitation results from a Ca(2+)-sensitive mechanism dependent on activation of phospholipase C and release of internal Ca2+. The facilitation is not contingent on activation of protein kinase C or entry of Ca2+ through nifedipine-sensitive Ca2+ channels.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Alanine; Alkaloids; Aminobutyrates; Animals; Cerebral Cortex; Cyclic GMP; Cycloleucine; Male; Neurons; Phorbol Esters; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Staurosporine

1996
Properties of a slow nonselective cation conductance modulated by neurotensin and other neurotransmitters in midbrain dopaminergic neurons.
    Journal of neurophysiology, 1996, Volume: 76, Issue:3

    1. A widespread mechanism of slow excitation throughout the nervous system involves overlapping changes in nonselective ion conductance and K+ conductance. We used whole cell patch-clamp recording to characterize such a nonselective conductance induced by neurotensin (NT) and other neurotransmitters in immunocytochemically identified dopaminergic neurons cultured from the rat ventral tegmental area (VTA). 2. The NT-induced inward current consisted of an initial peak and later "hump." The response was blocked reversibly by the nonpeptide NT-receptor antagonist SR48692, suggesting that it resulted from activation of NT receptors. 3. The channel was almost equally permeable to Na+ and K+, as determined from the reversal potential shift upon switching from Na+- to K(+)-containing external solution. The permeability of Cs+ was similar to that of Na+, as determined from the zero-current equation and average reversal potential in the 75 mM Na+ solution. Cl- was not significantly permeable. 4. In Ca(2+)-free external solution, the NT-induced current showed a fourfold increase in amplitude, and in high Mg2+ (20 mM) external solution, the NT-induced current showed an 80% decrease in amplitude, suggesting that external Ca2+ and Mg2+ could block the nonselective conductance. 5. The NT response was unaffected by loading the neurons with either the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or with 1 mM ca2+. The nonselective conductance was therefore not Ca2+ activated. 6. Loading the neurons with cyclic GMP or cyclic AMP (each with the phosphodiesterase inhibitor isobutyl-methylxanthine) did not affect the NT response. The NT-induced nonselective conductance was therefore not cyclic nucleotide-activated. 7. The latency of the NT response was long (> or = 185 ms, average 406 ms, 30 degrees C), indicating that NT did not induce the conductance through ligand-gated channels. Thus, NT activated a slow nonselective cation conductance. 8. Neurokinin B, a metabotropic glutamate agonist, and muscarine elicited responses similar to the NT response. The NT response could be elicited after desensitizing the responses to these other neurotransmitters, indicating receptor specificity in the activation of the nonselective conductance.

    Topics: Animals; Cations; Cations, Divalent; Cells, Cultured; Chelating Agents; Cyclic AMP; Cyclic GMP; Cycloleucine; Dopamine; Electrophysiology; Immunohistochemistry; Ion Channels; Male; Membrane Potentials; Mesencephalon; Neurokinin B; Neurons; Neurotensin; Neurotransmitter Agents; Rats

1996
Protein kinase C modulates calcium sensitivity of nitric oxide synthase in cerebellar slices.
    Journal of neurochemistry, 1995, Volume: 64, Issue:3

    The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated. Incubation of rat cerebellar slices with the specific metabotropic glutamate receptor agonist, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylate (trans-ACPD) increased cyclic GMP concentration two-fold. The increase was dose-dependently blocked by the protein kinase inhibitors staurosporine and calphostin C. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased cyclic GMP concentration without glutamate receptor activation. The cyclic GMP increases induced by PMA and trans-ACPD were independent of extracellular calcium blocked by N omega-nitro-L-arginine, a specific NOS inhibitor, and were not additive. Measurement of citrulline formation in cerebellar slices confirmed that NOS was activated by trans-ACPD and the activation was blocked by calphostin C. These results suggest that metabotropic glutamate receptor activates NOS through PKC. The calcium dependency of NOS activation was assessed in slices incubated with PMA and okadaic acid. NOS in both PMA-treated and untreated slices had similar activities at 100 nM free calcium, whereas at 25-70 nM free calcium, NOS in PMA-treated slices was more active than that in untreated slices. These results suggest that PKC regulates NO release in resting neurons by modulating the sensitivity of NOS at low calcium concentrations.

    Topics: Amino Acid Oxidoreductases; Animals; Calcium; Cerebellum; Cyclic GMP; Cycloleucine; Enzyme Activation; Excitatory Amino Acid Agonists; Guanylate Cyclase; In Vitro Techniques; Male; Naphthalenes; Nitric Oxide Synthase; Polycyclic Compounds; Protein Kinase C; Rats; Rats, Wistar; Receptors, Glutamate; Signal Transduction; Tetradecanoylphorbol Acetate

1995
Metabotropic glutamate receptors negatively coupled to adenylate cyclase inhibit N-methyl-D-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro.
    Molecular pharmacology, 1995, Volume: 47, Issue:5

    The functional effects of G protein-linked glutamate receptor activation have been studied in mouse mesencephalic neurons in vitro. We have been able to identify two receptor classes, one linked to phosphoinositide hydrolysis and another that inhibits adenylate cyclase. The agonist (1S,3R)-aminocyclopentane-1,3-dicarboxylate (ACPD) affected the two responses with similar potency (EC50 = 2 and 7 microM, respectively). In contrast, (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine selectively decreased adenylate cyclase activity (EC50 = 150 nM), without interfering with the phosphoinositide pathway. Activation of ion channel-linked glutamate receptors in mesencephalic neurons leads to cGMP formation. In this study, we demonstrate that cell pretreatment with ACPD or (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine prevented, in a dose-dependent fashion, N-methyl-D-aspartate (NMDA)-induced cGMP formation but not the kainate-stimulated response. The pharmacological profile suggests that receptors that are negatively coupled to adenylate cyclase are responsible for this effect. Coexposure of neurons to ACPD and Ba2+, a K+ channel blocker, counteracted the ACPD-induced blockade of NMDA receptors, suggesting that activation of K+ conductances could be involved in the post-transduction events triggered by metabotropic receptors in the mesencephalon. Neuronal treatment with NMDA for 10 min caused a reduction in mitochondrial activity. Direct inhibition of nitric oxide synthase with the inhibitor NG-nitro-L-arginine or removal of extracellular nitric oxide with reduced hemoglobin did not prevent this metabolic impairment, thus excluding a role for nitric oxide in this test for excitotoxicity. On the contrary, the mitochondrial function was maintained when neurons exposed to NMDA were preincubated with metabotropic receptor agonists. To summarize, our results suggest that metabotropic receptors that are negatively coupled to adenylate cyclase exert modulatory control specifically on NMDA receptor activity. This event could also contribute to the reduction of neurotoxic effects due to NMDA receptor hyperactivity.

    Topics: Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Amino Acids, Dicarboxylic; Animals; Cells, Cultured; Cyclic GMP; Cycloleucine; GTP-Binding Proteins; In Vitro Techniques; Mesencephalon; Mice; N-Methylaspartate; Neurons; Neurotoxins; Phosphatidylinositols; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Second Messenger Systems

1995
Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors.
    Neuroreport, 1994, Apr-14, Volume: 5, Issue:8

    In rat cerebellar slices, 500 microM (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) reversibly inhibited both dendritic and somatic increases in FLUO-3 fluorescence intensity induced by bath applications of 50-100 microM (+-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD). No effect of MCPG was observed on dendritically recorded excitatory postsynaptic potentials evoked by synaptic activation of either parallel or climbing fibres. Long-term depression of parallel fibre-Purkinje cell transmission, induced either by conjunctive activation of parallel and climbing fibres or by pairing parallel fibre stimulation with intradendritic injections of 8-BrcGMP, was not only prevented in the presence of MCPG but a robust long-term potentiation of responses consistently occurred. These data show that metabotropic glutamate receptor activation is necessary for the induction of LTD.

    Topics: Aniline Compounds; Animals; Benzoates; Biotransformation; Cerebellum; Cyclic GMP; Cycloleucine; Cyclopropanes; Evoked Potentials; Fluorescent Dyes; Glycine; In Vitro Techniques; Nerve Fibers; Neuronal Plasticity; Neurotoxins; Purkinje Cells; Rats; Receptors, Metabotropic Glutamate; Synaptic Transmission; Xanthenes

1994
Zinc protoporphyrin-IX blocks the effects of metabotropic glutamate receptor activation in the rat nucleus tractus solitarii.
    Molecular pharmacology, 1993, Volume: 43, Issue:6

    The effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD] on ionic current responses produced by ionotropic glutamate and gamma-aminobutyric acid (GABA)A receptor activation in the nucleus of the tractus solitarius (NTS) were examined. Recordings were made in the dorsomedial subdivision of the NTS adjacent to the area postrema in transverse brainstem slices of the rat. (1S,3R)-ACPD produced a small inward current (IACPD) associated with a decrease in conductance in approximately 50% of recordings. Monosynaptic excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation in the region of the tractus solitarius in the presence of D-amino-5-phosphonopentanoic acid and bicuculline were reversibly reduced by (1S,3R)-ACPD in > 90% of cells. The inward current evoked by pressure application of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (IAMPA) was potentiated in the presence of (1S,3R)-ACPD, whereas the outward current evoked by the GABAA receptor agonist muscimol (IMUSC) was inhibited. We have previously demonstrated that these effects may involve the activation of soluble guanylate cyclase. The diffusible second messengers nitric oxide and carbon monoxide are known to activate soluble guanylate cyclase. The nitric oxide synthase inhibitor L-omega-nitroarginine failed to inhibit responses to (1S,3R)-ACPD. The selective heme oxygenase inhibitor Zn-protoporphyrin-IX, which would be expected to block the production of carbon monoxide, antagonized the effects of (1S,3R)-ACPD on EPSCs, IAMPA, and IMUSC. However, IACPD was not blocked. A relatively inactive metalloprotoporphyrin, Cu-protoporphyrin-IX was ineffective. A cell-permeant form of cGMP, 8-Br-cGMP inhibited EPSCs, IAMPA, and IMUSC in the presence of Zn-protoporphyrin-IX but did not induce an inward current. These results further support the hypothesis that multiple metabotropic glutamate receptors exist in the NTS, and they suggest that one of these may be coupled to the activation of a soluble guanylate cyclase via the liberation of an easily diffusible second messenger such as carbon monoxide.

    Topics: Action Potentials; Animals; Brain Stem; Cyclic GMP; Cycloleucine; Electrophysiology; Heme Oxygenase (Decyclizing); Neurotoxins; Protoporphyrins; Rats; Receptors, GABA-A; Receptors, Glutamate

1993
Two pathways of cyclic GMP production through glutamate receptor-mediated nitric oxide synthesis.
    Journal of neurochemistry, 1992, Volume: 59, Issue:4

    The selective agonists for the metabotropic glutamate receptor and the ionotropic non-N-methyl-D-aspartate (NMDA) glutamate receptor, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) and (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), respectively, increased the cyclic GMP (cGMP) content in cerebellar slices prepared from adult rats. The ACPD-induced rise in cGMP level was blocked by compounds known to antagonize metabotropic glutamate receptors, such as DL-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyric acid, but not by ionotropic glutamate receptor antagonists, D-2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), whereas the AMPA-induced rise in cGMP level was suppressed by CNQX. Both rises in cGMP level involved nitric oxide synthase (NOS), because NG-methyl-L-arginine (NMLA), an inhibitor of NOS, blocked both cGMP level rises, and excess L-arginine reversed the effect of NMLA. After lithium chloride treatment, which could exhaust phosphatidylinositol phosphates, ACPD no longer increased cGMP levels, whereas AMPA was still effective. In a calcium-free medium, ACPD still induced a rise in cGMP level, whereas AMPA did not. When the molecular layer was isolated to determine the cGMP content separately from that in the rest of the cerebellar cortex, it was found that ACPD raised the cGMP level mainly in the molecular layer, whereas AMPA raised it in both sections.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 1-Methyl-3-isobutylxanthine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cyclic GMP; Cycloleucine; Ibotenic Acid; In Vitro Techniques; Male; Nitric Oxide; Phosphatidylinositols; Rats; Rats, Wistar; Receptors, Glutamate

1992