cyc 202 has been researched along with colchicine in 11 studies
Studies (cyc 202) | Trials (cyc 202) | Recent Studies (post-2010) (cyc 202) | Studies (colchicine) | Trials (colchicine) | Recent Studies (post-2010) (colchicine) |
---|---|---|---|---|---|
979 | 7 | 393 | 15,472 | 404 | 2,974 |
Protein | Taxonomy | cyc 202 (IC50) | colchicine (IC50) |
---|---|---|---|
Tubulin alpha-1A chain | Sus scrofa (pig) | 3.7639 | |
Tubulin beta chain | Sus scrofa (pig) | 3.8663 | |
Tubulin beta-4A chain | Homo sapiens (human) | 2.4334 | |
Tubulin beta chain | Homo sapiens (human) | 2.7244 | |
Tubulin alpha-3C chain | Homo sapiens (human) | 2.4334 | |
Serine/threonine-protein kinase pim-1 | Homo sapiens (human) | 4.3 | |
Tubulin alpha-1B chain | Homo sapiens (human) | 2.4334 | |
Tubulin alpha-4A chain | Homo sapiens (human) | 2.4334 | |
Tubulin beta-4B chain | Homo sapiens (human) | 2.4334 | |
Vesicular acetylcholine transporter | Tetronarce californica (Pacific electric ray) | 2.62 | |
Tubulin beta-3 chain | Homo sapiens (human) | 2.4334 | |
Tubulin beta-2A chain | Homo sapiens (human) | 2.4334 | |
Tubulin beta-8 chain | Homo sapiens (human) | 2.4334 | |
Tubulin beta-2B chain | Bos taurus (cattle) | 2.8255 | |
Tubulin alpha-3E chain | Homo sapiens (human) | 2.4334 | |
Tubulin alpha-1A chain | Homo sapiens (human) | 2.4334 | |
Similar to alpha-tubulin isoform 1 | Bos taurus (cattle) | 3.0611 | |
Similar to alpha-tubulin isoform 1 | Bos taurus (cattle) | 3.1553 | |
Tubulin alpha-1C chain | Homo sapiens (human) | 2.4334 | |
Tubulin beta-6 chain | Homo sapiens (human) | 2.4334 | |
Tubulin beta-2B chain | Homo sapiens (human) | 2.4334 | |
Tubulin beta-1 chain | Homo sapiens (human) | 2.4334 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (45.45) | 29.6817 |
2010's | 4 (36.36) | 24.3611 |
2020's | 2 (18.18) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR | 1 |
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR | 1 |
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR | 1 |
Hernandez-Verdun, D; Roussel, P; Sirri, V | 1 |
Bravo, R; Bruna, A; Caelles, C; Camarasa, J; Camins, A; Canudas, AM; Escubedo, E; Jiménez, A; Jorda, EG; Pallàs, M; Pubill, D; Verdaguer, E | 1 |
Chantakru, S; Khammanit, R; Kitiyanant, Y; Saikhun, J | 1 |
Abrahám, E; Ayaydin, F; Bakó, L; Dudits, D; Horváth, GV; Kotogány, E; Miskolczi, P; Otvös, K; Yu, P | 1 |
Sakai, M; Yoshimura, R | 1 |
11 other study(ies) available for cyc 202 and colchicine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Highly predictive and interpretable models for PAMPA permeability.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine | 2017 |
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility | 2019 |
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States | 2020 |
In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing.
Topics: CDC2 Protein Kinase; CDC28 Protein Kinase, S cerevisiae; Colchicine; Dactinomycin; DNA-Directed RNA Polymerases; DNA, Ribosomal; Gene Silencing; HeLa Cells; Humans; Isoenzymes; Mitosis; Okadaic Acid; Phosphoproteins; Purines; RNA Processing, Post-Transcriptional; RNA, Ribosomal; Roscovitine; Transcription, Genetic | 2000 |
Neuroprotective action of flavopiridol, a cyclin-dependent kinase inhibitor, in colchicine-induced apoptosis.
Topics: Amino Acid Chloromethyl Ketones; Animals; Animals, Newborn; Anthracenes; Anti-Bacterial Agents; Apoptosis; Apoptosis Regulatory Proteins; Blotting, Western; Bromodeoxyuridine; Carrier Proteins; Caspase 3; Caspases; CDC2-CDC28 Kinases; Cell Count; Cell Survival; Cells, Cultured; Cerebellum; Chromatin; Colchicine; Cyclin E; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase 5; Cyclin-Dependent Kinases; Cytochromes c; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Flavonoids; Flow Cytometry; Immunohistochemistry; Intracellular Signaling Peptides and Proteins; JNK Mitogen-Activated Protein Kinases; Kainic Acid; MAP Kinase Kinase 4; Microtubules; Minocycline; Mitogen-Activated Protein Kinase Kinases; Neurons; Neuroprotective Agents; Piperidines; Purines; Rats; Rats, Sprague-Dawley; Roscovitine; Time Factors; Tubulin | 2003 |
Effect of serum starvation and chemical inhibitors on cell cycle synchronization of canine dermal fibroblasts.
Topics: Animals; Aphidicolin; Cell Culture Techniques; Cell Cycle; Cells, Cultured; Colchicine; Culture Media, Serum-Free; Dermis; DNA; Dogs; Female; Fibroblasts; Growth Inhibitors; Purines; Roscovitine | 2008 |
Immunodetection of retinoblastoma-related protein and its phosphorylated form in interphase and mitotic alfalfa cells.
Topics: Cells, Cultured; Colchicine; Cyclin-Dependent Kinases; Immunohistochemistry; Interphase; Medicago sativa; Mitosis; Phosphorylation; Plant Growth Regulators; Plant Proteins; Purines; Roscovitine; Tubulin Modulators | 2011 |
Mechanotransduction-Targeting Drugs Attenuate Stiffness-Induced Hepatic Stellate Cell Activation in Vitro.
Topics: Actins; Adenosine Triphosphate; Animals; Benzamides; Cells, Cultured; Colchicine; Collagen Type I; Hepatic Stellate Cells; Imidazoles; Integrins; Male; Mechanotransduction, Cellular; Paclitaxel; Piperazines; Pyrazines; Quinoxalines; Rats, Sprague-Dawley; Roscovitine; Sulfonamides; Transforming Growth Factor beta; Tubulin Modulators | 2021 |