cyanoginosin-lr has been researched along with geosmin* in 3 studies
3 other study(ies) available for cyanoginosin-lr and geosmin
Article | Year |
---|---|
Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2.
Visible light (VIS) photocatalysis has large potential as a sustainable water treatment process, however the reaction pathways and degradation processes of organic pollutants are not yet clearly defined. The presence of cyanobacteria cause water quality problems since several genera can produce potent cyanotoxins, harmful to human health. In addition, cyanobacteria produce taste and odor compounds, which pose serious aesthetic problems in drinking water. Although photocatalytic degradation of cyanotoxins and taste and odor compounds have been reported under UV-A light in the presence of TiO2, limited studies have been reported on their degradation pathways by VIS photocatalysis of these problematic compounds. The main objectives of this work were to study the VIS photocatalytic degradation process, define the reactive oxygen species (ROS) involved and elucidate the reaction mechanisms. We report carbon doped TiO2 (C-TiO2) under VIS leads to the slow degradation of cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), while taste and odor compounds, geosmin and 2-methylisoborneol, were not appreciably degraded. Further studies were carried-out employing several specific radical scavengers (potassium bromide, isopropyl alcohol, sodium azide, superoxide dismutase and catalase) and probes (coumarin) to assess the role of different ROS (hydroxyl radical OH, singlet oxygen (1)O2, superoxide radical anion [Formula: see text] ) in the degradation processes. Reaction pathways of MC-LR and CYN were defined through identification and monitoring of intermediates using liquid chromatography tandem mass spectrometry (LC-MS/MS) for VIS in comparison with UV-A photocatalytic treatment. The effects of scavengers and probes on the degradation process under VIS, as well as the differences in product distributions under VIS and UV-A, suggested that the main species in VIS photocatalysis is [Formula: see text] , with OH and (1)O2 playing minor roles in the degradation. Topics: Alkaloids; Bacterial Toxins; Camphanes; Catalysis; Cyanobacteria; Cyanobacteria Toxins; Free Radical Scavengers; Light; Marine Toxins; Microcystins; Naphthols; Odorants; Photolysis; Reactive Oxygen Species; Taste; Titanium; Ultraviolet Rays; Uracil; Water Pollutants, Chemical; Water Purification | 2016 |
Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species.
The release of intracellular microcystin-LR (MC-LR), 2-methylisoborneol (MIB), and geosmin was investigated after the oxidation of three cyanobacteria (Microcystis aeruginosa (MA), Oscillatoria sp. (OSC), and Lyngbya sp. (LYN)). During the oxidation of 200,000 cells/mL of MA, release of intracellular MC-LR exceeded the World Health Organization (WHO) guideline of 1 μg/L during the lowest oxidant exposures (CT) tested: ozone (0 mg-min/L, below the ozone demand), chlorine (<40 mg-min/L), chlorine dioxide (<560 mg-min/L), and chloramine (<640 mg-min/L). As the CT increased, ozone, chlorine, and chlorine dioxide were able to oxidize the released MC-LR. During the oxidation of OSC (2800 cells/mL) and LYN (1600 cells/mL), release of intracellular MIB and geosmin exceeded reported threshold odor values after exposure to chlorine, chlorine dioxide, and chloramine, which have low reactivity with these taste and odor compounds. Ozone oxidation of OSC yielded an increase in MIB concentration at lower exposures (≤2.9 mg-min/L), likely due to insufficient oxidation by hydroxyl radicals. The release of intracellular organic matter (IOM) was also measured to determine the potential of bulk measurements to act as a surrogate for cyanotoxins and metabolite release. In all cases, the dissolved organic carbon (DOC) release was less than 0.25 mgC/L, which lacked the sensitivity to indicate the release of MC-LR, MIB, or geosmin. The fluorescence index proved to be a more sensitive indicator of intracellular organic matter release than DOC for MA. These results illustrate that toxic or odorous compounds may be released from cyanobacteria cells during oxidation processes with minimal changes in the DOC concentration. Topics: Camphanes; Chloramines; Chlorine; Chlorine Compounds; Cyanobacteria; Marine Toxins; Microcystins; Microcystis; Naphthols; Odorants; Oxidants; Oxides; Ozone; Water Purification | 2014 |
Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir.
The algal extracellular products (ECPs) in three cultures of cyanobacteria species (Anabaena, Microcystis, and Oscillatoria) dominating the eutrophic reservoir populations and their toxins have been investigated in the present work. Using gas chromatography coupled with high-resolution electron-impact mass spectrometry (GC/EI-MS) and high performance anion-exchange chromatography (HPAEC) techniques, more than 20 compounds were found in the algal culture (including cells and filtrates) extracts. The main identified ECPs were classified to polysaccharides, hydrocarbons, and aldehydes. Odor causing substances such as trans-1,10-dimethyl-trans-9-decalol (geosmin) and 2-methylisoborneol (2-MIB)were also found in the algal cultures. The potential mutagenicity of the algal suspensions was also studied with the Ames test. The organic extracts of the algal suspension from the axenic cultures were mutagenicity in TA98 without S9 mix and in TA100 with and without S9 mix. The results indicate that the ECPs of three algae species dominating the eutrophic reservoir were mutagenic clearly in the bacterial test. Topics: Camphanes; Carbon; Carboxylic Acids; Chlorophyll; Chlorophyll A; Complex Mixtures; Cyanobacteria; Eutrophication; Hydrocarbons; Marine Toxins; Microcystins; Mutagenicity Tests; Naphthols; Polysaccharides; Salmonella typhimurium; Taiwan; Water Supply | 2007 |