cyanidin-3-o-beta-glucopyranoside has been researched along with proanthocyanidin* in 3 studies
3 other study(ies) available for cyanidin-3-o-beta-glucopyranoside and proanthocyanidin
Article | Year |
---|---|
Whole body radioprotective effect of phenolic extracts from the fruits of Malus baccata (Linn.) Borkh.
This study was designed to evaluate the radioprotective effect of phenolics extracted from the fruits of Malus baccata (Linn.) Borkh. (MBP-3b) against damage induced by (60)Co γ-irradiation in vivo. MBP-3b could significantly improve the activity of endogenous antioxidant enzymes and the T-AOC, as well as reduce the MDA level in the liver and kidneys of irradiated mice. In addition, pretreatment with MBP-3b at a dose of 150 mg per kg bw could significantly enhance immunomodulation activity by promoting the proliferation of spenocytes and monocyte phagocytosis. The administration of MBP-3b prevented the decline induced by radiation of haematological parameters (WBC, RBC, PLT and HGB). Furthermore, MBP-3b could protect spenocytes from radiation-induced damage by inhibiting cell apoptosis. The results indicated that MBP-3b possesses strong whole body radioprotective and immunomodulatory activities. The main constituents of MBP-3b were tentatively identified as delphinidin-3,5-diglucoside, cyanidin-3-glucoside, chlorogenic acid, proanthocyanidin C1, quercetin-3-galactoside, quercetin-3-glucoside, quercetin-3-xyloside/arabinoside, phloretin-2-xyloseglucoside, quercetin-3-rhamnoside and phlorizin. MBP-3b could be used as a probable radioprotector against gamma radiation induced oxidative damage. Topics: Animals; Anthocyanins; Antioxidants; Apoptosis; Cell Proliferation; Chlorogenic Acid; Fruit; Gamma Rays; Glucosides; Male; Malondialdehyde; Malus; Mice; Phenols; Plant Extracts; Proanthocyanidins; Quercetin; Radiation-Protective Agents; Spleen | 2016 |
MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis.
Expression of the Arabidopsis thaliana MYB transcription factor TRANSPARENT TESTA 2 (TT2) in Medicago trunculata hairy roots induces both proanthocyanidin accumulation and the ATP-dependent vacuolar/vesicular uptake of epicatechin 3'-O-glucoside; neither process is active in control roots that do, however, possess anthocyanidin 3-O-glucoside vacuolar uptake activity. A vacuolar membrane-localized multidrug and toxic compound extrusion (MATE) transporter, Medicago MATE1, was identified at the molecular level and shown to preferentially transport epicatechin 3'-O-glucoside. Genetic evidence has implicated TT12, a tonoplastic MATE transporter from Arabidopsis, in the transport of precursors for proanthocyanidin biosynthesis in the seed coat. However, although Arabidopsis TT12 facilitates the transport of cyanidin 3-O-glucoside into membrane vesicles when expressed in yeast, there is no evidence that cyanidin 3-O-glucoside is converted to proanthocyanidins after transport into the vacuole. Here, we show that Arabidopsis TT12, like Medicago MATE1, functions to transport epicatechin 3'-O-glucoside as a precursor for proanthocyanidin biosynthesis, and Medicago MATE1 complements the seed proanthocyanidin phenotype of the Arabidopsis tt12 mutant both quantitatively and qualitatively. On the basis of biochemical properties, tissue-specific expression pattern, and genetic loss-of-function analysis, we conclude that MATE1 is an essential membrane transporter for proanthocyanidin biosynthesis in the Medicago seed coat. Implications of these findings for the assembly of oligomeric proanthocyanidins are discussed. Topics: Anthocyanins; Arabidopsis; Arabidopsis Proteins; Biological Transport; Genetic Complementation Test; Genetic Vectors; Glucosides; Kinetics; Medicago truncatula; Microscopy, Confocal; Models, Biological; Molecular Sequence Data; Phylogeny; Plant Proteins; Proanthocyanidins; Reverse Transcriptase Polymerase Chain Reaction; Seeds; Transcription Factors; Vacuoles | 2009 |
The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat.
Phenotypic characterization of the Arabidopsis thaliana transparent testa12 (tt12) mutant encoding a membrane protein of the multidrug and toxic efflux transporter family, suggested that TT12 is involved in the vacuolar accumulation of proanthocyanidin precursors in the seed. Metabolite analysis in tt12 seeds reveals an absence of flavan-3-ols and proanthocyanidins together with a reduction of the major flavonol quercetin-3-O-rhamnoside. The TT12 promoter is active in cells synthesizing proanthocyanidins. Using translational fusions between TT12 and green fluorescent protein, it is demonstrated that this transporter localizes to the tonoplast. Yeast vesicles expressing TT12 can transport the anthocyanin cyanidin-3-O-glucoside in the presence of MgATP but not the aglycones cyanidin and epicatechin. Inhibitor studies demonstrate that TT12 acts in vitro as a cyanidin-3-O-glucoside/H(+)-antiporter. TT12 does not transport glycosylated flavonols and procyanidin dimers, and a direct transport activity for catechin-3-O-glucoside, a glucosylated flavan-3-ol, was not detectable. However, catechin-3-O-glucoside inhibited TT12-mediated transport of cyanidin-3-O-glucoside in a dose-dependent manner, while flavan-3-ol aglycones and glycosylated flavonols had no effect on anthocyanin transport. It is proposed that TT12 transports glycosylated flavan-3-ols in vivo. Mutant banyuls (ban) seeds accumulate anthocyanins instead of proanthocyanidins, yet the ban tt12 double mutant exhibits reduced anthocyanin accumulation, which supports the transport data suggesting that TT12 mediates anthocyanin transport in vitro. Topics: Anthocyanins; Antiporters; Arabidopsis; Arabidopsis Proteins; Cytoplasmic Vesicles; Flavonoids; Glucosides; Mutation; Proanthocyanidins; Promoter Regions, Genetic; Protein Transport; Seeds; Substrate Specificity; Transcription Factors; Vacuoles; Yeasts | 2007 |