cyanidin-3-o-beta-glucopyranoside has been researched along with malvidin-3-glucoside* in 23 studies
23 other study(ies) available for cyanidin-3-o-beta-glucopyranoside and malvidin-3-glucoside
Article | Year |
---|---|
Blueberry pectin and increased anthocyanins stability under in vitro digestion.
Pectin was extracted from blueberry powder as water soluble fraction (WSF), rich in branched regions, and chelator soluble fraction (CSF), linear, with strong negative charge. Binding of pectins with three anthocyanin standards (malvidin-3-glucoside; M3G, cyanidin-3-glucoside; C3G, and delphinidin-3-glucoside; D3G) and blueberry extract (BBE) were used. Without blueberry pectin, M3G was the most stable followed by C3G, whereas D3G completely disappeared after gastrointestinal digestion. CSF prevented M3G and C3G degradation more than WSF, the in vitro stability was highest with CSF and C3G. Increased stability of anthocyanins after simulated gastrointestinal digestion suggests that anthocyanins can be transported to colon where gut microbiota actively produce anthocyanin metabolites. The amount of bound anthocyanins that interacted with blueberry pectin increased as the number of hydroxyl groups increased on anthocyanins. Hydrogen bonding in addition to electrostatic interaction contribute to stability of pectin-anthocyanins interaction at pH 4.0 and contribute to stability under gastrointestinal simulation. Topics: Anthocyanins; Blueberry Plants; Digestion; Glucosides; Hydrogen Bonding; Hydrogen-Ion Concentration; Pectins; Plant Extracts; Static Electricity | 2020 |
Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring.
In this study, intermolecular copigmentation between five primary wine monoglucosidic anthocyanins (cyanidin-3-O-glucoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, petunidin-3-O-glucoside, and malvidin-3-O-glucoside) and three common wine phenolics (gallic acid, (-)-epicatechin, and quercetin-3-O-glucoside) were investigated through experimental and theoretical methods, and the influence of substituent pattern of anthocyanin B ring was studied emphatically. Chromatic and thermodynamic analysis showed there were great differences among these different pigment-copigment systems. Spatial conformations of the 15 copigmentation complexes were obtained through theoretical calculation, and diverse π-π stacking modes were observed. These results indicated that the substituent pattern of anthocyanin B ring had significant impact on its affinity to copigments, and more, the structures of pigments and copigments determined the color expression and stability of copigmentation together. Topics: Anthocyanins; Color; Glucosides; Molecular Structure; Phenols; Quercetin; Wine | 2020 |
Reaction kinetics of the acetaldehyde-mediated condensation between (-)-epicatechin and anthocyanins and their effects on the color in model wine solutions.
The reaction kinetics of five primary wine anthocyanins (cyanidin-3-O-glucoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, petunidin-3-O-glucoside, and malvidin-3-O-glucoside) and (-)-epicatechin with the presence of acetaldehyde were evaluated in model wine solutions at a range of varying temperatures (25, 35, 45, and 55 °C). The loss of anthocyanins followed first-order reaction model, while the formation of two isomers of anthocyanin ethyl-linked (-)-epicatechin was fitted to zero-order reaction model. The rate constant (k) showed that petunidin-3-O-glucoside was the most reactive anthocyanin, followed by the two 3',4'-substituted anthocyanins (peonidin-3-O-glucoside and cyanidin-3-O-glucoside), while the least reactive were another two 3',4',5'-substituted anthocyanins (malvidin-3-O-glucoside and delphindin-3-O-glucoside). The activation energies (E Topics: Acetaldehyde; Anthocyanins; Catechin; Color; Glucosides; Isomerism; Kinetics; Spectrophotometry; Temperature; Thermodynamics; Wine | 2019 |
Impact of a Water-Soluble Gallic Acid-Based Dendrimer on the Color-Stabilizing Mechanisms of Anthocyanins.
The interaction of two anthocyanins with a water-soluble polyanionic dendrimer was studied through UV/Vis, stopped-flow, and NMR spectroscopy. Cyanidin-3-glucoside (cy3glc) revealed a stronger interaction than malvidin-3-glucoside (mv3glc) at pH 1 according to their apparent association constants. A higher color increased was also obtained for cy3glc at pH 3.5 as a result of this stronger interaction. A high-frequency chemical shift of the cy3glc aromatic protons suggest the formation of ionic pairs. The interaction parameters (K≈700 m Topics: Anthocyanins; Dendrimers; Gallic Acid; Glucosides; Hydrogen-Ion Concentration; Isomerism; Kinetics; Solubility; Water | 2019 |
Optimisation of pulsed electric fields extraction of anthocyanin from Beibinghong Vitis Amurensis Rupr.
Beibinghong Vitis amurensis Rupr has wide plantation area, high productivity and rich anthocyanin. Common hot-extraction has poor deficiency and destroys anthocyanin severely. For Beibinghong V. amurensis Rupr as materials, response surface-optimised electric fields were used, the structure of Beibinghong was observed by SEM, antioxidant activity was measured by DPPH, ABTS and reducing force, the component of anthocyanin was analyzed by HPLC-MS. We found the content of total anthocyanin extracted by pulsed electric fields was 166.65 ± 3.88 mg/100 g.FW. Total anthocyanin from Beibinghong had high antioxidant activity, also contained multiple steady anthocyanin of delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, petunidin 3-O-glucoside, peonidin 3-O-glucoside, malvidin 3-O-glucoside, delphinidin-3-O-(6-O-acetyl) glucoside and delphinidin-3-O-(6-O-p-coumaroyl) glucoside et al. In conclusion, the optimised pulsed electric fields method can quickly and efficiently extract several kinds of anthocyanins from V. amurensis Rupr. This study promoted the intensive processing of V. amurensis Rupr and widened the practical application of pulsed electric field technology. Topics: Anthocyanins; Antioxidants; Chemical Fractionation; Chromatography, High Pressure Liquid; Electric Stimulation; Glucosides; Mass Spectrometry; Microscopy, Electron, Scanning; Vitis | 2018 |
Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace.
Ultrasound-Assisted Extraction (UAE) of total anthocyanins (TA) and phenolics (TP) from Blueberry Wine Pomace (BWP) was optimized using Response Surface Methodology (RSM). A Box-Behnken design was used to predict that the optimized conditions were an extraction temperature of 61.03°C, a liquid-solid ratio of 21.70mL/g and a sonication time of 23.67min. Using the modeled optimized conditions, the predicted and experimental yields of TA and TP were within a 2% difference. The yields of TA and TP obtained through the optimized UAE method were higher than those using a Conventional Solvent Extraction (CSE) method. Seven anthocyanins, namely delphinidin-3-O-glucoside, delphindin-3-O-arabinoside, petunidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-glucoside, malvidin-3-O-glucoside and malvidin-3-O-arabinoside, were found in the BWP extract from both the UAE and CSE methods. Topics: Anthocyanins; Blueberry Plants; Food Handling; Glucosides; Phenols; Plant Extracts; Tandem Mass Spectrometry; Ultrasonics; Wine | 2016 |
The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells.
Studies have shown that anthocyanins (ACNs) in berries contribute to eye health. However, information on the relationship between the chemical structures and visual functions of ACNs is scarce. This study investigated the protection effects of ACNs with different structures against visible light-induced damage in human retinal pigment epithelial (RPE) cells.. Four ACNs with different aglycones, namely, pelargonidin-3-glucoside (Pg-3-glu), cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, and malvidin-3-glucoside (Mv-3-glu), were isolated from three berries (blueberry, blackberry and strawberry). Of these ACNs, Cy-3-glu exhibited the highest reactive oxygen species inhibitory capacity in RPE cells, with 40 µg mL(-1) Cy-3-glu showing a ROS clearance of 57.5% ± 4.2%. The expression of vascular endothelial growth factor levels were significantly (P < 0.05) down-regulated by Cy-3-glu and Mv-3-glu in a visible light-induced damage RPE cell model. Cy-3-glu and Pg-3-glu treatments significantly (P < 0.05) inhibited the increase in β-galactosidase during the RPE cell ageing caused by visible light exposure.. Our findings suggest that the biological properties of different ACNs significantly vary. Cy-3-glu, which contains an ortho hydroxyl group in its B ring, possibly exerts multiple protective effects (antioxidant, anti-angiogenic and anti-ageing) in RPE cells. Therefore, Cy-3-glu may prove useful as a prophylactic health food for the prevention of retinal diseases. Topics: Angiogenesis Inhibitors; Anthocyanins; Antioxidants; Blueberry Plants; Cell Line; Cellular Senescence; Dietary Supplements; Fragaria; Fruit; Glucosides; Humans; Light; Molecular Structure; Retinal Diseases; Retinal Pigment Epithelium; Rubus; Stereoisomerism | 2015 |
Authentication of geographical origin and crop system of grape juices by phenolic compounds and antioxidant activity using chemometrics.
The main goal of this work was to propose an authentication model based on the phenolic composition and antioxidant and metal chelating capacities of purple grape juices produced in Brazil and Europe in order to assess their typicality. For this purpose, organic, conventional, and biodynamic grape juices produced in Brazil (n = 65) and in Europe (n = 31) were analyzed and different multivariate class-modeling and classification statistical techniques were employed to differentiate juices based on the geographical origin and crop system. Overall, Brazilian juices, regardless of the crop system adopted, presented higher contents of total phenolic compounds and flavonoids, total monomeric anthocyanins, proanthocyanidins, flavonols, flavanols, cyanidin-3-glucoside, delphinidin-3-glucoside, and malvidin-3,5-glucoside. No differences were observed for trans-resveratrol, malvidin-3-glucoside, and pelargonidin-3-glucoside between countries and among crop systems. A total of 91% of Brazilian and 97% of European juices were adroitly classified using partial least squares discriminant analysis when the producing region was considered (92% efficiency), in which the free-radical scavenging activity toward 2,2-diphenyl-1-picrylhydrazyl, content of total phenolic compounds, gallic acid, and malvidin-3-glucoside were the variables responsible for the classification. Intraregional models based on soft independent modeling of class analogy were able to differentiate organic from conventional Brazilian juices as well as conventional and organic/biodynamic European juices. Topics: Anthocyanins; Beverages; Biphenyl Compounds; Brazil; Europe; Flavonoids; Fruit; Geography; Glucosides; Humans; Organic Agriculture; Oxidation-Reduction; Phenols; Picrates; Plant Extracts; Resveratrol; Stilbenes; Vitis | 2015 |
Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism.
The objectives of this study were to compare the anti-inflammatory effects of anthocyanins from blueberry (BBA), blackberry (BKA), and blackcurrant (BCA) and to determine the relationship between their antioxidant capacity and anti-inflammatory effect in macrophages. Major anthocyanins in BBA, BKA and BCA were malvidin-3-glucoside (16%), cyanidin-3-glucoside (98%) and delphinidin-3-rutinoside (44%), respectively. BKA showed higher total antioxidant capacity than BBA and BCA. RAW 264.7 macrophages were incubated with 0-20 μg/ml of BBA, BKA and BCA, and subsequently activated by lipopolysaccharide (LPS) to measure proinflammatory cytokine production. Interleukin 1β (IL-1β) messenger RNA (mRNA) levels were significantly decreased by all berry anthocyanins at 10 μg/ml or higher. Tumor necrosis factor α (TNFα) mRNA levels and secretion were also significantly decreased in LPS-treated macrophages. The levels of the repression were comparable for all berry anthocyanins. LPS-induced nuclear factor κB (NF-κB) p65 translocation to the nucleus was markedly attenuated by all of the berry anthocyanins. In bone marrow-derived macrophages (BMMs) from nuclear factor E2-related factor 2 wild-type (Nrf2(+/+)) mice, BBA, BKA and BCA significantly decreased cellular reactive oxygen species (ROS) levels with a concomitant decrease in IL-1β mRNA levels upon LPS stimulation. However, in the BMM from Nrf2(-/-) mice, the anthocyanin fractions were able to significantly decrease IL-1β mRNA despite the fact that ROS levels were not significantly affected. In conclusion, BBA, BKA and BCA exert their anti-inflammatory effects in macrophages, at least in part, by inhibiting nuclear translocation of NF-κB independent of the NRF2-mediated pathways. Topics: Animals; Anthocyanins; Blueberry Plants; Glucosides; Inflammation; Inflammation Mediators; Lipopolysaccharides; Macrophages; Mice; NF-E2-Related Factor 2; NF-kappa B; Protein Transport; Ribes; Rubus; Tumor Necrosis Factor-alpha | 2014 |
Efficient quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries ( Vaccinium spp.).
Anthocyanins and phenolic acids are major secondary metabolites in blueberry with important implications for human health maintenance. An improved protocol was developed for the accurate, efficient, and rapid comparative screening for large blueberry sample sets. Triplicates of six commercial cultivars and four breeding selections were analyzed using the new method. The compound recoveries ranged from 94.2 to 97.5 ± 5.3% when samples were spiked with commercial standards prior to extraction. Eighteen anthocyanins and 4 phenolic acids were quantified in frozen and freeze-dried fruits. Large variations for individual and total anthocyanins, ranging from 201.4 to 402.8 mg/100 g, were assayed in frozen fruits. The total phenolic acid content ranged from 23.6 to 61.7 mg/100 g in frozen fruits. Across all genotypes, freeze-drying resulted in minor reductions in anthocyanin concentration (3.9%) compared to anthocyanins in frozen fruits. However, phenolic acids increased by an average of 1.9-fold (±0.3) in the freeze-dried fruit. Different genotypes frequently had comparable overall levels of total anthocyanins and phenolic acids, but differed dramatically in individual profiles of compounds. Three of the genotypes contained markedly higher concentrations of delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, and malvidin 3-O-glucoside, which have previously been implicated as bioactive principles in this fruit. The implications of these findings for human health benefits are discussed. Topics: Anthocyanins; Blueberry Plants; Breeding; Chromatography, High Pressure Liquid; Food, Preserved; Frozen Foods; Fruit; Genotype; Glucosides; Health Promotion; Humans; Hydroxybenzoates; Plant Extracts; Species Specificity; Tandem Mass Spectrometry | 2013 |
Different phenolic compounds activate distinct human bitter taste receptors.
Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations. Topics: Anthocyanins; Beer; Beverages; Biflavonoids; Cacao; Catechin; Fruit; Glucosides; Humans; Hydrolyzable Tannins; Polyphenols; Proanthocyanidins; Taste; Taste Buds; Tea; Vegetables; Wine | 2013 |
A new approach on the gastric absorption of anthocyanins.
The bioavailability of anthocyanins is the most difficult one to assess amongst all flavonoid compounds as a result of their occurrence under different structures in equilibrium depending on pH. Due to their rapid appearance in plasma, the absorption of anthocyanins is likely to occur at the gastric level. Further investigations of the mechanisms by which anthocyanins are absorbed are limited by the lack of testable gastric epithelial cell models that form functional barriers. The methods available to evaluate the absorption of drugs at the gastric level make use of isolated gastric epithelial cells, which is both time and labour consuming. In the present study, a biologically relevant in vitro model of moderately differentiated adenocarcinoma stomach cells (MKN-28) was used as gastric barrier. The transepithelial electrical resistance (TEER) of MKN-28 cell monolayers was evaluated at pH values that cover the physiologic range of the stomach, ensuring the integrity of the cell monolayer . The immunofluorescence assay attested the localization of occludins at the cellular margins, which is associated with a non-disrupted membrane. Anthocyanins were found to cross MKN-28 cells in a time dependent manner and probably via a saturable transport mechanism. Topics: Absorption; Anthocyanins; Cell Line; Electric Impedance; Gastric Mucosa; Glucosides; Humans; Hydrogen-Ion Concentration; Kinetics; Membrane Proteins; Microscopy, Fluorescence; Occludin; Tight Junctions; Transcytosis | 2012 |
Optimization of the extraction of anthocyanins from the fruit skin of Rhodomyrtus tomentosa (Ait.) Hassk and identification of anthocyanins in the extract using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS)
Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants. In this study, the extraction of anthocyanins from freeze-dried fruit skin of downy rose-myrtle (Rhodomyrtus tomentosa (Ait.) Hassk var. Gangren) was optimized using response surface methodology (RSM). Using 60% ethanol containing 0.1% (v/v) hydrochloric acid as extraction solvent, the optimal conditions for maximum yields of anthocyanin (4.358 ± 0.045 mg/g) were 15.7:1 (v/w) liquid to solid ratio, 64.38 °C with a 116.88 min extraction time. The results showed good fits with the proposed model for the anthocyanin extraction (R(2) = 0.9944). Furthermore, the results of high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis of the anthocyanins extracted from the fruit skin of downy rose-myrtle revealed the presence of five anthocyanin components, which were tentatively identified as delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, petunidin-3-glucoside and malvidin-3-glucoside. Topics: Anthocyanins; Chromatography, High Pressure Liquid; Fruit; Glucosides; Myrtaceae; Plant Extracts; Spectrometry, Mass, Electrospray Ionization | 2012 |
Inhibitory effects of anthocyanins on secretion of Helicobacter pylori CagA and VacA toxins.
Anthocyanins have been studied as potential antimicrobial agents against Helicobacter pylori. We investigated whether the biosynthesis and secretion of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) could be suppressed by anthocyanin treatment in vitro. H. pylori reference strain 60190 (CagA(+)/VacA(+)) was used in this study to investigate the inhibitory effects of anthocyanins; cyanidin 3-O-glucoside (C3G), peonidin 3-O-glucoside (Peo3G), pelargonidin 3-O-glucoside (Pel3G), and malvidin 3-O-glucoside (M3G) on expression and secretion of H. pylori toxins. Anthocyanins were added to bacterial cultures and Western blotting was used to determine secretion of CagA and VacA. Among them, we found that C3G inhibited secretion of CagA and VacA resulting in intracellular accumulation of CagA and VacA. C3G had no effect on cagA and vacA expression but suppressed secA transcription. As SecA is involved in translocation of bacterial proteins, the down-regulation of secA expression by C3G offers a mechanistic explanation for the inhibition of toxin secretion. To our knowledge, this is the first report suggesting that C3G inhibits secretion of the H. pylori toxins CagA and VacA via suppression of secA transcription. Topics: Anthocyanins; Antigens, Bacterial; Bacterial Proteins; Gene Expression Regulation, Bacterial; Glucosides; Helicobacter pylori; Humans | 2012 |
Exceptionally fast uptake and metabolism of cyanidin 3-glucoside by rat kidneys and liver.
To asses the hypothesis that anthocyanins are rapidly taken up from the blood into tissues, where they accumulate up to their bioactivity threshold, an intravenous dose of cyanidin 3-glucoside (1) was administered to anaesthetized rats. Cyanidin 3-glucoside (1) and its metabolites were analyzed in the plasma, kidneys, liver, urine, and bile, using last-generation mass spectrometry. Compound 1 was found to rapidly disappear from plasma (t/2=0.36 min). As soon as 15 s after its administration, both 1 and its methylation product, peonidin 3-glucoside (2), were detected in the plasma, kidneys, and liver. At 1 min, both 1 and 2 had almost disappeared from the plasma, but attained their peak concentrations in the kidneys and in the liver. Compound 2 was rapidly excreted both in the bile and in the urine. Three additional methylated metabolites were detected in traces, namely, delphinidin 3-glucoside (3), petunidin 3-glucoside (4), and malvidin 3-glucoside (5). These data contribute to solving the paradox of the high bioactivity of anthocyanins in spite of their apparent low bioavailability. Topics: Animals; Anthocyanins; Bile; Glucosides; Kidney; Liver; Molecular Structure; Rats | 2011 |
Bog bilberry (Vaccinium uliginosum L.) extract reduces cultured Hep-G2, Caco-2, and 3T3-L1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability.
Bog bilberry (Vaccinium uliginosum L.) is a blue-pigmented edible berry related to bilberry (Vaccinium myrtillus L.) and the common blueberry (Vaccinium corymbosum). The objective of this study was to investigate the effect of a bog bilberry anthocyanin extract (BBAE) on cell growth, membrane permeability, and cell cycle of 2 malignant cancer cell lines, Caco-2 and Hep-G2, and a nonmalignant murine 3T3-L1 cell line. BBAE contained 3 identified anthocyanins. The most abundant anthocyanin was cyanidin-3-glucoside (140.9 +/- 2.6 microg/mg of dry weight), followed by malvidin-3-glucoside (10.3 +/- 0.3 microg/mg) and malvidin-3-galactoside (8.1 +/- 0.4 microg/mg). Hep-G2 LC50 was calculated to be 0.563 +/- 0.04 mg/mL, Caco-2 LC50 was 0.390 +/- 0.30 mg/mL and 0.214 +/- 0.02 mg/mL for 3T3-L1 cells. LDH release, a marker of membrane permeability, was significantly increased in Hep-G2 cells and Caco-2 cells after 48 and 72 h compared to 24 h. The increase was 21% at 48 h and 57% at 72 h in Caco-2 cells and 66% and 139% in Hep-G2 cells compared to 24 h. However, 3T3-L1 cells showed an unexpected significant lower LDH activity (P < or = 0.05) after 72 h of exposure corresponding to a 21% reduction in LDH release. BBAE treatment increased sub-G1 in all 3 cell lines without influencing cells in the G2/M phase. BBAE treatment reduced the growth and increased the accumulation of sub-G1 cells in 2 malignant and 1 nonmalignant cell line; however, the effect on membrane permeability differs considerably between the malignant and nonmalignant cells and may in part be due to differences in cellular membrane composition. Topics: 3T3-L1 Cells; Animals; Anthocyanins; Antineoplastic Agents, Phytogenic; Caco-2 Cells; Cell Cycle; Cell Membrane Permeability; Cell Survival; Dose-Response Relationship, Drug; Fruit; Glucosides; Hep G2 Cells; Humans; Inhibitory Concentration 50; Mice; Phytotherapy; Plant Extracts; Resting Phase, Cell Cycle; Time Factors; Vaccinium | 2010 |
Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves.
Symptoms of grapevine leafroll disease (GLRD) in red-fruited wine grape (Vitis vinifera L.) cultivars consist of green veins and red and reddish-purple discoloration of inter-veinal areas of leaves. The reddish-purple color of symptomatic leaves may be due to the accumulation of anthocyanins and could reflect an up-regulation of genes involved in their biosynthesis.. We examined six putative constitutively expressed genes, Ubiquitin, Actin, GAPDH, EF1-a, SAND and NAD5, for their potential as references for normalization of gene expression in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Using the geNorm program, a combination of two genes (Actin and NAD5) was identified as the stable set of reference genes for normalization of gene expression data obtained from grapevine leaves. By using gene-specific RT-qPCR in combination with a reliable normalization factor, we compared relative expression of the flavonoid biosynthetic pathway genes between leaves infected with Grapevine leafroll-associated virus 3 (GLRaV-3) and exhibiting GLRD symptoms and virus-free green leaves obtained from a red-fruited wine grape cultivar (cv. Merlot). The expression levels of these different genes ranged from two- to fifty-fold increase in virus-infected leaves. Among them, CHS3, F3'5'H, F3H1, LDOX, LAR1 and MybA1 showed greater than 10-fold increase suggesting that they were expressed at significantly higher levels in virus-infected symptomatic leaves. HPLC profiling of anthocyanins extracted from leaves indicated the presence of cyanidin-3-glucoside and malvidin-3-glucoside only in virus-infected symptomatic leaves. The results also showed 24% higher levels of flavonols in virus-infected symptomatic leaves than in virus-free green leaves, with quercetin followed by myricetin being the predominant compounds. Proanthocyanidins, estimated as total tannins by protein precipitation method, were 36% higher in virus-infected symptomatic leaves when compared to virus-free green leaves.. The results, the first example to our knowledge, showed that modulation of the flavonoid biosynthetic pathway occurred in GLRaV-3-infected leaves of a red-fruited wine grape cultivar (cv. Merlot) leading to de novo synthesis of two classes of anthocyanins. These anthocyanins have contributed to the expression of reddish-purple color of virus-infected grapevine leaves exhibiting GLRD symptoms. Topics: Anthocyanins; Biosynthetic Pathways; Closteroviridae; Flavonoids; Flavonols; Fruit; Gene Expression; Gene Expression Regulation, Plant; Genes, Plant; Glucosides; Plant Diseases; Plant Leaves; Proanthocyanidins; Transcription, Genetic; Up-Regulation; Vitis | 2010 |
Induction of apoptosis and inhibition of invasion in human hepatoma cells by anthocyanins from meoru.
Anthocyanins belong to a class of flavonoids exhibiting antioxidant and anti-inflammatory actions as well as a variety of chemotherapeutic effects. However, little is known about the cellular and molecular mechanism of anticancer activity. In this study, we investigated if the anthocyanins (delphinidin-3,5-diglucoside: cyanidin-3,5-diglucoside: petunidin-3,5-diglucoside: delphinidin-3-glucoside: malvdin-3,5-diglucoside: peonidin-3,5-diglucoside: cyanidin-3-glucoside: petunidin-3-glucoside: peonidin-3- glucoside: malvidin-3- glucoside = 27:63:8.27:1:2.21:2.21:6.7:1.25:5.72:1.25) [corrected] isolated from meoru (Vitis coignetiae Pulliat) exerted antiproliferative and anti-invasive and apoptotic effects on human hepatoma Hep3B cells. It was found that the anthocyanins could inhibit cell growth by 75% at the concentration of 400 microg/mL for 48 h. Flow cytometric analysis showed that the anthocyanins increased the amount of DNA fragments (sub-G1 fraction) in a dose-dependent manner, which is closely related to mitochondrial dysfunction and reduction in antiapoptotic proteins (Bcl-2, xIAP, cIAP-1, and cIAP-2). The anthocyanins also significantly inhibited the migration and invasion of Hep3B cells through a matrigel-coated chamber. Taken together this study indicates that the anthocyanins from meoru have antiproliferative and anti-invasive effects and may induce apoptosis through the activation of the mitochondrial pathway and inhibition of antiapoptotic proteins. This study provides evidence that the anthocyanins isolated from meoru might be useful in the treatment of human hepatitis B-associated hepatoma. Topics: Anthocyanins; Apoptosis; bcl-2-Associated X Protein; bcl-X Protein; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; DNA Fragmentation; Dose-Response Relationship, Drug; Flow Cytometry; Glucosides; Humans; Inhibitor of Apoptosis Proteins; Liver Neoplasms; Membrane Potential, Mitochondrial; Neoplasm Invasiveness; Proto-Oncogene Proteins c-bcl-2; Reverse Transcriptase Polymerase Chain Reaction; Vitis; X-Linked Inhibitor of Apoptosis Protein | 2009 |
Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid and light irradiation.
Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g(-1) dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g(-1) DCW, in response to treatment with jasmonic acid, and comprising approximately 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g(-1) DCW which made up approximately 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g(-1) DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g(-1) DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g(-1) DCW, but there was no change in the anthocyanin composition. Topics: Anthocyanins; Cell Culture Techniques; Cell Line; Chromatography, High Pressure Liquid; Cyclopentanes; Glucosides; Light; Oxylipins; Pigments, Biological; Vitis | 2003 |
Interactions between cyanidin 3-O-glucoside and furfural derivatives and their impact on food color changes.
The reaction between (+)-catechin and cyanidin 3-O-glucoside was investigated in the presence of furfural and 5-(hydroxymethyl)furfural using LC/DAD and LC/MS analysis, and the obtained results were compared with those recorded with malvidin 3-O-glucoside. The appearance of colorless and red and yellow compounds was observed showing that the two polyphenols competed in the condensation process with a predominant formation of the reddish adducts. The colored compounds formed in the case of cyanidin 3-O-glucoside seemed to be more stable than those formed when the reaction was conducted with malvidin 3-O-glucoside. The detection of these reddish and yellowish compounds constitutes a new support for the contribution of this kind of reaction in the color evolution of fruit-derived beverages. In addition, other unidentified compounds were also detected, showing the occurrence of other interaction pathways in addition to the polymerization process yielding oligomeric bridged derivatives and opening perspectives of further investigations of these model solutions. Topics: Anthocyanins; Chromatography, High Pressure Liquid; Color; Food; Food Technology; Furaldehyde; Glucosides; Solutions; Spectrometry, Mass, Electrospray Ionization; Spectrophotometry; Spectrophotometry, Ultraviolet | 2002 |
Anthocyanin color behavior and stability during storage: effect of intermolecular copigmentation.
Intermolecular copigmentation reactions are significantly responsible for the manifold color expression of fruits, berries, and their products. These reactions were investigated with five anthocyanins and five phenolic acids acting as copigments. The stability of the pigment-copigment complexes formed was studied during a storage period of 6 months. The study was conducted using a UV-visible spectrophotometer to monitor the hyperchromic effect and the bathochromic shift of the complexes. The greatest copigmentation reactions took place in malvidin 3-glucoside solutions. The strongest copigments for all anthocyanins were ferulic and rosmarinic acids. The immediate reaction of rosmarinic acid with malvidin 3-glucoside resulted in the biggest bathochromic shift (19 nm) and the strongest hyperchromic effect, increasing the color intensity by 260%. The color induced by rosmarinic acid was not very stable. The color intensity of pelargonidin 3-glucoside increased greatly throughout the storage period with the addition of ferulic and caffeic acids. Topics: Anthocyanins; Caffeic Acids; Cinnamates; Color; Coumaric Acids; Depsides; Drug Stability; Food Preservation; Glucosides; Hydroxybenzoates; Pigments, Biological; Rosmarinic Acid; Solutions; Time Factors | 2002 |
Synergistic antioxidant effect of catechin and malvidin 3-glucoside on free radical-initiated peroxidation of linoleic acid in micelles.
The inhibitory effect of anthocyanins has been investigated in the peroxidation of linoleic acid in micelles in the presence and in the absence of (+)-catechin. The peroxidation was initiated by thermal decomposition of 2,2(')-azobis[2-(2-imidazolin-2-yl)propane], and the kinetics of peroxidation were followed by measuring the rate of oxygen consumption and the rate of disappearance of the antioxidant. The analysis of the antioxidant effect of various anthocyanins, alone or in the presence of catechin, demonstrates that catechin, which is relatively inefficient at inhibiting linoleic acid oxidation, regenerates the highly efficient antioxidant malvidin 3-glucoside and, at a lower extent, peonidin 3-glucoside. The malvidin 3-glucoside recycling by catechin strongly increases the antioxidant efficiency of these two antioxidants. This protective mechanism appears specific for malvidin and peonidin 3-glucosides. The high unpaired spin density of the phenolic O atoms in the radicals generated by these anthocyanins, calculated by the semiempirical quantum chemical AM1 method, may explain the observed behavior. Topics: Anthocyanins; Antioxidants; Azo Compounds; Catechin; Dose-Response Relationship, Drug; Drug Synergism; Free Radicals; Glucosides; Imidazoles; Inhibitory Concentration 50; Linoleic Acid; Lipid Peroxidation; Lipoproteins, LDL; Micelles; Oxygen | 2002 |
Blackberry anthocyanins are slightly bioavailable in rats.
Anthocyanins are phenolic compounds widely distributed in fruits and vegetables. Several positive effects of anthocyanin feeding have been described. We evaluated the absorption and metabolism of anthocyanins (cyanidin 3-glucoside and malvidin 3-glucoside) in rats adapted for 8 d to a diet enriched with a lyophilized blackberry powder. Rats had free access to an anthocyanin-containing diet for 8 h/d. Food was consumed throughout this period, and no anthocyanin accumulated in plasma at any of the times of sampling. Anthocyanins were recovered in urine as the intact glycosidic forms, whereas neither aglycone nor conjugates were detected. Moreover, peonidin 3-glucoside was present in urine and could have resulted from hepatic methylation at the 3' hydroxyl moiety position of cyanidin 3-glucoside. Urinary recovery of cyanidin 3-glucoside in either intact or methylated forms was approximately 0.26% of the ingested amount, whereas that of malvidin 3-glucoside was 0.67%. This result suggested that structure of the aglycone moiety of anthocyanins could play an important role in their metabolism. Low amounts of glucosides as well as of cyanidin were recovered in cecal contents. This could result from adaptation of microflora to anthocyanin degradation. Overall, these data indicate that blackberry anthocyanins are excreted in urine as intact and methylated glucoside forms and that their bioavailability is very low compared with other flavonoids. Topics: Animals; Anthocyanins; Antioxidants; Biological Availability; Cecum; Chromatography, High Pressure Liquid; Fermentation; Fruit; Glucosides; Intestinal Absorption; Male; Methylation; Rats; Rats, Wistar; Rosaceae; Urinalysis | 2002 |