cx-4945 and 1-2-5-8-tetrahydroxy-anthraquinone

cx-4945 has been researched along with 1-2-5-8-tetrahydroxy-anthraquinone* in 2 studies

Other Studies

2 other study(ies) available for cx-4945 and 1-2-5-8-tetrahydroxy-anthraquinone

ArticleYear
Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells.
    Biological research, 2019, Apr-16, Volume: 52, Issue:1

    Tumor microenvironment (TME) plays a vital role in determining the outcomes of radiotherapy. As an important component of TME, vascular endothelial cells are involved in the perivascular resistance niche (PVRN), which is formed by inflammation or cytokine production induced by ionizing radiation (IR). Protein kinase CK2 is a constitutively active serine/threonine kinase which plays a vital role in cell proliferation and inflammation. In this study, we investigated the potential role of CK2 in PVRN after IR exposure.. Specific CK2 inhibitors, Quinalizarin and CX-4945, were employed to effectively suppressed the kinase activity of CK2 in human umbilical vein endothelial cells (HUVECs) without affecting their viability. Results showing that conditioned medium from IR-exposed HUVECs increased cell viability of A549 and H460 cells, and the pretreatment of CK2 inhibitors slowed down such increment. The secretion of IL-8 and IL-6 in HUVECs was induced after exposure with IR, but significantly inhibited by the addition of CK2 inhibitors. Furthermore, IR exposure elevated the nuclear phosphorylated factor-κB (NF-κB) p65 expression in HUVECs, which was a master factor regulating cytokine production. But when pretreated with CK2 inhibitors, such elevation was significantly suppressed.. This study indicated that protein kinase CK2 is involved in the key process of the IR induced perivascular resistant niche, namely cytokine production, by endothelial cells, which finally led to radioresistance of non-small cell lung cancer cells. Thus, the inhibition of CK2 may be a promising way to improve the outcomes of radiation in non-small cell lung cancer cells.

    Topics: Anthraquinones; Blotting, Western; Carcinoma, Non-Small-Cell Lung; Casein Kinase II; Cytokines; Endothelial Cells; Endothelium, Vascular; Humans; Lung Neoplasms; Naphthyridines; Phenazines; Protein Kinase Inhibitors

2019
Protein kinase CK2 is necessary for the adipogenic differentiation of human mesenchymal stem cells.
    Biochimica et biophysica acta, 2015, Volume: 1853, Issue:10 Pt A

    CK2 is a serine/threonine protein kinase, which is so important for many aspects of cellular regulation that life without CK2 is impossible. Here, we analysed CK2 during adipogenic differentiation of human mesenchymal stem cells (hMSCs). With progress of the differentiation CK2 protein level and the kinase activity decreased. Whereas CK2α remained in the nucleus during differentiation, the localization of CK2β showed a dynamic shuttling in the course of differentiation. Over the last years a large number of inhibitors of CK2 kinase activity were generated with the idea to use them in cancer therapy. Our results show that two highly specific inhibitors of CK2, CX-4945 and quinalizarin, reduced its kinase activity in proliferating hMSC with a similar efficiency. CK2 inhibition by quinalizarin resulted in nearly complete inhibition of differentiation whereas, in the presence of CX-4945, differentiation proceeded similar to the controls. In this case, differentiation was accompanied by the loss of CX-4945 inhibitory function. By analysing the subcellular localization of PPARγ2, we found a shift from a nuclear localization at the beginning of differentiation to a more cytoplasmic localization in the presence of quinalizarin. Our data further show for the first time that a certain level of CK2 kinase activity is required for adipogenic stem cell differentiation and that inhibition of CK2 resulted in an altered localization of PPARγ2, an early regulator of differentiation.

    Topics: Active Transport, Cell Nucleus; Adipogenesis; Animals; Anthraquinones; Casein Kinase II; Cell Differentiation; Cell Nucleus; Cell Proliferation; Female; Humans; Male; Mesenchymal Stem Cells; Naphthyridines; Phenazines; PPAR gamma

2015