curdione has been researched along with elemene* in 2 studies
1 review(s) available for curdione and elemene
Article | Year |
---|---|
Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.
Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone. Topics: Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Antioxidants; Clinical Trials as Topic; Curcuma; Curcumin; Cyclohexanols; Disease Models, Animal; Furans; Heterocyclic Compounds, 2-Ring; Humans; Hypoglycemic Agents; Inflammation; Neoplasms; Sesquiterpenes; Sesquiterpenes, Germacrane | 2013 |
1 other study(ies) available for curdione and elemene
Article | Year |
---|---|
Identification and quantitation of eleven sesquiterpenes in three species of Curcuma rhizomes by pressurized liquid extraction and gas chromatography-mass spectrometry.
In this paper, GC-MS and pressurized liquid extraction (PLE) was developed for identification and quantitative determination/estimation 11 sesquiterpenes including germacrene D, curzerene, gamma-elemene, furanodienone, curcumol, isocurcumenol, furanodiene, germacrone, curdione, curcumenol and neocurdione in Ezhu which are derived from three species of Curcuma, i.e., Curcuma phaeocaulis, Curcuma wenyujin and Curcuma kwangsiensis by using an analogue as standard. The results showed the methodology could quantitatively compare the quality of three species of Curcuma. The contents of investigated sesquiterpenes in three species of Curcuma were high variant. Hierarchical clustering analysis based on characteristics of 11 identified peaks in GC profiles showed that 18 samples were divided into two main clusters, C. phaeocaulis and C. wenyujin, respectively. C. kwangsiensis showed the characters closed to C. phaeocaulis or C. wenyujin based on its location. Five components such as furanodienone, germacrone, curdione, curcumenol and neocurdione were optimized as markers for quality control of Ezhu. Topics: Chemistry, Pharmaceutical; Chromatography; Chromatography, Ion Exchange; Chromatography, Liquid; Curcuma; Drug Industry; Furans; Gas Chromatography-Mass Spectrometry; Heterocyclic Compounds, 2-Ring; Magnetic Resonance Spectroscopy; Models, Chemical; Phylogeny; Quality Control; Sesquiterpenes; Sesquiterpenes, Germacrane | 2005 |