curcumin has been researched along with succinic-anhydride* in 5 studies
5 other study(ies) available for curcumin and succinic-anhydride
Article | Year |
---|---|
Production and Anti-Inflammatory Performance of PVA Hydrogels Loaded with Curcumin Encapsulated in Octenyl Succinic Anhydride Modified Schizophyllan as Wound Dressings.
Amphiphilic polysaccharides can be used as wall materials and applied to encapsulate hydrophobic active chemicals; moreover, there is significant demand for novel medical high-molecular-weight materials with various functions. In order to prepare amphiphilic schizophyllan (SPG), octenyl succinic anhydride (OSA) was chosen to synthesize OSA-modified schizophyllan (OSSPG) using an esterified reaction. The modification of OSSPG was demonstrated through FT-IR and thermal analysis. Moreover, it was found that OSSPG has a better capacity for loading curcumin, and the loading amount was 20 μg/mg, which was 2.6 times higher than that of SPG. In addition, a hydrogel made up of PVA, borax, and C-OSSPG (OSSPG loaded with curcumin) was prepared by means of the one-pot method, based on the biological effects of curcumin and the immune-activating properties of SPG. The mechanical properties and biological activity of the hydrogel were investigated. The experimental results show that the dynamic cross-linking of PVA and borax provided the C-OSSPG/BP hydrogel dressing with exceptional self-healing properties, and it was discovered that the C-OSSPG content increased the hydrogel's swelling and moisturizing properties. In fibroblast cell tests, the cells treated with hydrogel had survival rates of 80% or above. Furthermore, a hydrogel containing C-OSSPG could effectively promote cell migration. Due to the excellent anti-inflammatory properties of curcumin, the hydrogel also significantly reduces the generation of inflammatory factors, such as TNF-α and IL-6, and thus has a potential application as a wound dressing medicinal material. Topics: Anti-Inflammatory Agents; Bandages; Curcumin; Hydrogels; Sizofiran; Spectroscopy, Fourier Transform Infrared; Succinic Anhydrides; Wound Healing | 2023 |
A novel approach of encapsulating curcumin and succinylated derivative in mannosylated-chitosan nanoparticles.
Curcumin (CUR) manifests anti-colon cancer activity but suffers from low solubility, bioavailability, and instability, rendering it not as effective as its chemotherapeutic cousins. Here, we conjugate CUR to succinic anhydride (SA), (CUR.SA conjugate), subsequently formulated in mannose-conjugated chitosan nanoparticles (CUR-NPs and CUR.SA-NPs). Instrumental analyses confirmed formation of CUR.SA and mannosylated chitosan (CM) conjugates, with CUR.SA being less crystalline thus, more soluble. Average particle size of CUR-NPs and CUR.SA-NPs were 268 ± 6 nm and 342 ± 4.6 nm, with drug entrapment of 93.34 ± 0.40 % and 98.46 ± 0.06 % respectively. In vitro releases of CUR and CUR.SA from nanoparticles in pH 1.2 and 6.8 media were slow and sustained over 2 h and 72 h, respectively. The physical characteristics of the nanoparticles were unchanged over 3 weeks of storage. Thus, a successful CUR.SA conjugate has been developed, couriered in CM nanoparticles, with favorable attributes that warrant further anti-colon cancer studies, which is ongoing. Topics: Chitosan; Curcumin; Drug Carriers; Humans; Mannose; Nanoparticles; Neoplasms; Particle Size; Succinic Anhydrides | 2022 |
Application of Curcumin Emulsion Carrier from Ultrasonic-Assisted Prepared Octenyl Succinic Anhydride Rice Starch.
The emulsification of ultrasonic-assisted prepared octenyl succinic anhydride (OSA) rice starch on curcumin was investigated in the present study. The results indicated that the encapsulation efficiency of curcumin in emulsions stabilized by OSA-ultrasonic treatment rice starch was improved, from 81.65 ± 0.14% to 89.03 ± 0.09%. During the in vitro oral digestion, the particle size and Zeta potential of the curcumin emulsion did not change significantly (p > 0.05). During the in vitro digestive stage of the stomach and small intestine, the particle size of the curcumin emulsion continued to increase, and the absolute potential continued to decrease. Our work showed that OSA-pre-treatment ultrasonic rice starch could improve curcumin bioavailability by increasing the encapsulation efficiency with stronger stability to avoid the attack of enzymes and high intensity ion, providing a way to develop new emulsion-based delivery systems for bioactive lipophilic compounds using OSA starch. Topics: Curcumin; Emulsions; Oryza; Starch; Succinic Anhydrides; Ultrasonics | 2022 |
Fucoidan-based micelles as P-selectin targeted carriers for synergistic treatment of acute kidney injury.
Topics: Acute Kidney Injury; Animals; Antioxidants; Curcumin; Drug Carriers; Drug Liberation; Endocytosis; Half-Life; Human Umbilical Vein Endothelial Cells; Humans; Male; Mice, Inbred ICR; Micelles; P-Selectin; Polysaccharides; Succinic Anhydrides; Tissue Distribution | 2021 |
Exploration of the Stabilization Mechanism and Curcumin Bioaccessibility of Emulsions Stabilized by Whey Protein Hydrolysates after Succinylation and Glycation in Different Orders.
The combined effects of succinic anhydride (SA) succinylation and linear dextrin (LD) glycation on whey protein hydrolysates (WPH) and their stabilized emulsions were evaluated. Degree of succinylation (DS), degree of glycation (DG), and degree of browning of samples suggested that a competitive displacement of reactive groups existed when WPH reacted with SA and LD in different orders. Attenuated total reflection Fourier transform infrared (ATR-FTIR) and far-UV circular dichroism (CD) indicated that the order of modification methods had a significant effect on secondary structures of WPH. Succinylation combined with glycation effectively reduced the surface hydrophobicity and increased the molecular flexibility of WPH. Meanwhile, the total free -SH content decreased, and the exposed free -SH content increased. Results of storage stability and gastrointestinal fate of the curcumin-loaded emulsion revealed that the modified WPH with higher DS was more effective for improving the curcumin bioaccessibility, while that with higher DG was more effective for enhancing the stability of the emulsion. Topics: Curcumin; Dextrins; Emulsions; Gastrointestinal Tract; Glycosylation; Humans; Hydrophobic and Hydrophilic Interactions; Protein Hydrolysates; Succinic Anhydrides; Whey Proteins | 2020 |