curcumin has been researched along with shellac* in 2 studies
2 other study(ies) available for curcumin and shellac
Article | Year |
---|---|
Co-delivery of curcumin and quercetin in shellac nanocapsules for the synergistic antioxidant properties and cytotoxicity against colon cancer cells.
Synergistic bioactivity of dietary polyphenols can enhance functional food development to prevent chronic diseases like cancer. In this study, physicochemical properties and cytotoxicity of curcumin and quercetin co-encapsulated in shellac nanocapsules at different mass ratios were investigated and compared to nanocapsules with one polyphenol and their unencapsulated counterparts. At curcumin and quercetin mass ratio of 4:1, encapsulation efficiency was approximately 80% for both polyphenols, and the nanocapsules showed the highest synergistic antioxidant properties and cytotoxicity for HT-29 and HCT-116 colorectal cancer cells. The nanocapsules had discrete structures smaller than 50 nm and remained stable during 4-week refrigerated storage, and the encapsulated polyphenols were amorphous. After simulated digestions, 48% of the encapsulated curcumin and quercetin were bioaccessible, the digesta retained nanocapsule structures and cytotoxicity, and the cytotoxicity was higher than nanocapsules with only one polyphenol and free polyphenol controls. This study provides insights on utilizing multiple polyphenols as promising anti-cancer agents. Topics: Antioxidants; Colonic Neoplasms; Curcumin; Humans; Nanocapsules; Polyphenols; Quercetin | 2023 |
Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles.
Curcumin-loaded zein-shellac composite particles were prepared by the antisolvent co-precipitation method. The encapsulation efficiency of curcumin was significantly improved from 82.7% in zein particles to 93.2% in zein-shellac complex particles. The result of differential scanning calorimetry suggested that curcumin in the polymeric matrix was in an amorphous state. Fourier transform infrared spectroscopy analysis revealed that curcumin had non-covalently interacted with zein and shellac, mainly through hydrogen bonding and hydrophobic interaction. Aggregates in irregular shapes, with large sizes, were found by atomic force microscopy, and conglutination, integration or fusion of different entities into network structures occurred at a high level of shellac. At the mass ratio of zein to shellac of 1:1, curcumin in the complex particles exhibited improved photochemical and thermal stability. Curcumin-loaded zein-shellac complex particles allowed the controlled release of curcumin in both PBS medium and simulated gastrointestinal fluids. Topics: Curcumin; Resins, Plant; Zein | 2017 |